Ю.Д. Маркина, П.А. Хазов

РЕШЕНИЕ ЗАДАЧ СТРОИТЕЛЬНОЙ МЕХАНИКИ С ПРИМЕНЕНИЕМ САПР

Учебное пособие

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Нижегородский государственный архитектурно-строительный университет»

Ю.Д. Маркина, П.А. Хазов

РЕШЕНИЕ ЗАДАЧ СТРОИТЕЛЬНОЙ МЕХАНИКИ С ПРИМЕНЕНИЕМ САПР

Утверждено редакционно-издательским советом университета в качестве учебного пособия

> Нижний Новгород ННГАСУ 2025

ББК 38.5 M 27 X 12 УДК 624.04(075)

Рецензенты:

A.E. Hayмoв — канд. техн. наук, заведующий кафедрой Экспертизы и управления недвижимостью ФГБОУ ВО «Белгородский государственный технический университет им. В.Г. Шухова»

А.Н. Сомов – директор ООО «ТелекомСтройЭксперт»

Маркина, Ю. Д. Решение задач строительной механики с применением САПР : учебное пособие / Ю. Д. Маркина, П. А. Хазов ; Министерство образования и науки Российской Федерации, Нижегородский государственный архитектурно-строительный университет. — Нижний Новгород : ННГАСУ, 2025. — 96 с. — ISBN 978-5-528-00614-7. — Текст : непосредственный.

Приведены указания по выполнению работ по дисциплине «Системы автоматизированного проектирования в промышленном и гражданском строительстве». Рассмотрены содержание и последовательность выполнения работ, даны рекомендации по численному расчёту консольной балки, многопролетной статически определимой балки и железобетонной плиты в ПК ЛИРА 10.4. Показаны основные этапы расчета и вся цепочка команд, участвующих в выполнении заданий. Представлены алгоритмы ввода узлов и элементов, связей, врезных шарниров, назначения основных характеристик материалов, приложения сосредоточенных и распределенных нагрузок, изгибающих моментов, задания нескольких загружений для одной расчетной схемы, составления РСУ, применения графического и табличного оформления результатов расчёта.

Учебное пособие предназначено для обучающихся в ННГАСУ по направлениям подготовки 08.03.01 Строительство, профиль Промышленное и гражданское строительство, 08.04.01 Строительство и 08.05.01 Строительство уникальных зданий и сооружений, специализация Строительство высотных и большепролетных зданий и сооружений.

ББК 38.5

Оглавление

Введение
1. Расчет консольной балки
1.1. Варианты заданий
1.2. Алгоритм расчета в ПК ЛИРА 10.4
1.3. Образец выполнения работы
1.3.1. Задание
1.3.2. Численный расчет
1.3.3. Аналитический расчет
1.3.4. Сравнение результатов
2. Расчет многопролетной статически определимой балки
2.1. Варианты заданий
2.2. Алгоритм расчета в ПК ЛИРА 10.4
2.3. Образец выполнения работы
2.3.1. Задание
2.3.2. Численный расчет
2.3.3. Аналитический расчет
2.3.4. Сравнение результатов
3. Расчет железобетонной плиты
3.1. Варианты заданий
3.2. Алгоритм расчета в ПК ЛИРА 10.4
3.3. Образец выполнения работы
3.3.1. Задание
3.3.2. Численный расчет в программе ПК ЛИРА
3.3.3. Численный расчет в программе SCAD++
3.3.4. Аналитический расчет
3.3.5. Сравнение результатов
Список литературы

Введение

ПК ЛИРА является одним из ведущих многофункциональных программных комплексов, используемых для расчета строительных зданий и сооружений в настоящее время.

ПК ЛИРА используется для расчета, проектирования и научного исследования конструкций различного назначения во всех областях техники, базирующихся на методах строительной механики.

Навыки использования современных программно-вычислительных комплексов необходимы каждому студенту для эффективной реализации в качестве востребованного и успешного специалиста.

Данное учебное пособие берет за основу задачи из вводного курса по программному комплексу ЛИРА 10.4 [1] и приводит указания по выполнению лабораторных работ по дисциплине «Системы автоматизированного проектирования в промышленном и гражданском строительстве».

Основные цели первой лабораторной работы: на простейшем примере расчета консольной балки показать основные этапы расчета и всю цепочку команд, участвующих в выполнении задания, научиться задавать узлы и элементы, назначать основные характеристики материала, связи и сосредоточенные нагрузки, освоить навыки графического и табличного оформления результатов расчёта.

Основные цели второй лабораторной работы: на примере расчёта многопролетной статически определимой балки показать основные этапы расчета и всю цепочку команд, участвующих в расчете конструкции, состоящей из нескольких элементов, научиться назначать стандартные типы сечений железобетонных стержней, задавать врезные шарниры, прикладывать распределенные нагрузки и изгибающие моменты, продолжить освоение навыков графического и табличного оформления результатов расчёта.

Основные цели третьей лабораторной работы: на примере расчёта железобетонной плиты показать основные этапы расчета и всю цепочку команд, участвующих в расчете конструкции, состоящей из пластинчатых конечных элементов, научиться назначать поперечные сечения плоских элементов и изотропные материалы, освоить алгоритм задания нескольких загружений для одной расчетной схемы и составления РСУ, применить табличный вариант оформления результатов расчета.

1. Расчет консольной балки

1.1. Варианты заданий

Для балки (рис. 1.1) требуется:

- выполнить расчет на статические нагрузки;
- вывести на экран деформированную схему, эпюры изгибающих моментов $M_{\mathcal{V}}$ и поперечных сил $Q_{\mathcal{Z}}$;
 - определить прогиб под силой P;
- сравнить результаты аналитического и численного расчетов.

Сечение — двутавр № 10Б1. Материал балки — стальной прокат из базы данных ТУ 14-2-24—72.

Сосредоточенная сила P. Интенсивность постоянной равномерно распределенной нагрузки $q=1.8~\mathrm{kH/m}.$

Рис. 1.1. Расчетная схема балки

Длина а.

Табл. 1.1 Варианты заланий к ЛБ №1

			анты задании к ЛЬ №1
№ варианта	№ расчетной схемы	<i>Р,</i> кH	А, м
1	1	1	4
1	2	1,5	3,5
2	3	2	3
3	4	2,5	2,5
4	1	3	2
5	2	1	1,5
6	3	1,5	4
7	4	2	3,5
8	1	2,5	3
9	2	3	2,5
10	3	1	2
11	4	1,5	1,5
12	1	2	4
13	2	2,5	3,5
14	3	3	3
15	4	1	2,5
16	1	1,5	2
17	2	2	1,5
18	3	2,5	4
19	4	3	3,5
20	1	1	3
21	2	1,5	2,5
22	3	2	2
23	4	2,5	1,5
24	1	3	4
25	2	1	3,5

1.2. Алгоритм расчета в ПК ЛИРА 10.4¹

Условие задания

Для балки (рис. 1.2) требуется:

- выполнить расчет на статические нагрузки;
- вывести на экран деформированную схему, эпюры изгибающих моментов Му и поперечных сил Qz;
 - определить прогиб под силой Р;
 - сравнить результаты аналитического и численного расчетов.

Сечение — двутавр № 10Б1. Материал балки — стальной прокат из базы данных ГОСТ 27772—88. Сосредоточенная сила P=1 кH. Длина балки L=1 м.

Рис. 1.2. Расчетная схема балки

Методические указания к выполнению лабораторной работы №1

Приступим к созданию расчетной схемы.

- 1.Запуск программы
- 2.В редакторе начальной загрузки **Новый проект** (рис. 1.3) выберите **Создать новый проект** и задайте параметры проекта:

Рис. 1.3. Редактор начальной загрузки

¹ [1]

- •имя Задача 1;
- •описание Расчет консольных балок;
- •тип создаваемой задачи (2) Плоская рама (X, Z, UY). X, Z, UY возможные линейные и угловые перемещения узлов.
 - •нажмите кнопку Создать.
 - 3. Настройка сети. В нижней левой части экрана нажмите на кнопку Сеть.

- •В раскрывающемся списке задайте: шаг 1; количество 2; плоскость XOZ.
- 4. Создание геометрии расчетной схемы. **Схема** ► Добавить пространственную раму (кнопка на панели инструментов).
- •Заполните параметры шаблона для создания балки. Шаг вдоль оси X-1 м, Повторов 1, Число конечных элементов N-10 (рис. 1.27). Пояснение для параметров шаблона: 1 м Шаг разбивки (длина фрагмента шаблона вдоль соответствующей оси X, Y или Z); 1 число повторов с заданным шагом; 10 число конечных элементов, на которые разбивается заданный Шаг разбивки.

Рис. 1.4. Задание параметров расчетной схемы

- •Щелкните по кнопке Использовать фрагмент.
- •С помощью курсора мыши необходимо созданный фрагмент добавить к расчетной схеме. Для этого курсор мыши подведите к пересечению точечных линий на сети построений (это точка (0;0;0) глобальной системы координат) и при возникновении значка подтвердите щелчком мыши точку вставки фрагмента схемы.
- •Увеличение схемы. Вид ► Увеличить панораму или Вид ► Увеличить в окне ► Увеличить в 8 раз (рис. 1.5).

Рис. 1.5. Увеличение конструкции в окне

- 5.Вывод на экран номеров узлов. **Вид ▶ Изменить атрибуты представления** модели (кнопка ж на панели инструментов).
- •В панели активного режима **Атрибуты представления** в ветке **Узлы** установите флажок **Номер** (рис. 1.6).

Рис. 1.6. Вывод на экран номеров узлов

- •Уберите флажок с команды Использовать выделенные объекты.
- •Уберите флажок с команды Добавить префиксы к значениям.
- •Щелкните по кнопке Назначить.

На рис. 1.7 представлена полученная расчетная схема.

Рис. 1.7. Расчетная схема с номерами узлов

- 6.Выделение левого узла балки (узла № 11). **Выбор ► Выбрать объекты** (кнопка на панели инструментов).
- •С помощью курсора выделите левый узел № 11 балки (узел окрасится в красный ивет). По умолчанию отметка узлов и элементов выполняется с помощью прямоугольной рамки. При движении рамки налево элементы и узлы выделяются полным попаданием либо касанием, а при движении рамки направо только полным попаданием.
- 7.Задание граничных условий. **Схема** ► **Назначить связи** (кнопка ♣ на панели инструментов).
- •В панели активного режима с помощью установки флажков отметьте те направления, по которым запрещены перемещения узла \mathbb{N} 11 (X перемещение в направлении оси X, Z перемещение в направлении оси Z, UY угол поворота вокруг оси Y) (рис. 1.8). Красный цвет у узла исчезнет. Под узлом будут изображаться связи, запрещающие линейные перемещения; над узлом запрещающие угловые перемещения
- . Цвет связей соответствует цвету осей, в направлении (или вокруг) которых
 - •Щелкните по кнопке Закрепить.

запрещено перемещение 🕌 🕶 х.

- 8.Выделение элементов. **Выбор ▶ Выбрать объекты** (кнопка **№** на панели инструментов).
- •С помощью курсора выделите все конечные элементы (элементы окрасятся в красный цвет). Узлы и элементы можно выделять прямоугольной рамкой, а можно двойным щелчком левой кнопкой мыши по узлу или элементу.
- 9.Задание сечений. **Редакторы** ▶ **Редактор сечений/жесткостей** (кнопка панели инструментов).

•На панели **Стальное сечение** вкладке **Двутавр прокатный** задайте параметры сечения (рис. 1.9). Таблица сортамента — ГОСТ 26020—83. Двутавр с параллельными гранями полок типа Б, Профиль 10Б1 (рис. 1.10).

Рис. 1.8. Задание связей

Рис. 1.9. Выбор вкладки Сечения

Рис. 1.10. Панель Стальные сечения стержней

- •При корректном вводе геометрических размеров на экране изображается эскиз создаваемого сечения со всеми размерами.
- •Выпишите значения осевого момента инерции I_{y1} = $171*10^{-8}$ м 4 и высоты сечения h = 0,1 м для аналитического решения задачи.
- •Для того, чтобы увидеть в списке сечений отредактированные параметры сечения, надо щелкнуть курсором по любой другой заполненной или незаполненной строке в этой части экрана.
- •Для выхода из **Редактора сечений/жесткостей** щелкните мышкой по вкладке Главный вид.
- 10.Задание материала. **Редакторы** ► **Редактор материалов** (кнопка 🦈 на панели инструментов).
- •Выберите из категории **Материал из базы данных** ► **Стальной прокат из базы** данных ►ГОСТ 27772—88 (рис. 1.11).
- •Выпишите значение модуля упругости первого рода $E=2{,}06*10^8~{\rm кH/m^2}$ для аналитического решения задачи.
- •Для выхода из **Редактора материалов** щелкните мышкой по вкладке **Главный** вид.

Рис. 1.11. Задание материала

- 11. Назначение сечений и материалов элементам расчетной схемы. **Конструирование** ► **Назначить сечение, материал и параметры конструирования** (кнопка

 па на панели инструментов (рис. 1.12).
- •На панели активного режима **Назначить жесткости** в **Параметрах назначения** укажите радиокнопкой **Использовать сечение и материал**.
- •Выберите в Доступные сечения 1. Двугавр прокатный 10 Б1, в Доступных материалах 1. Стальной прокат из базы данных ГОСТ 27772—88.
 - •Нажмите кнопку Назначить.

Рис. 1.12. Назначение жесткости

- 12.Выделение правого узла балки (узла № 1). **Выбор Выбрать объекты** (кнопка на панели инструментов).
- •С помощью курсора выделите правый узел № 1 балки (*узел окрасится в красный цвет*). По умолчанию отметка узлов выполняется с помощью прямоугольной рамки. При движении рамки налево элементы и узлы выделяются полным попаданием либо касанием, а при движении рамки направо только полным попаданием.
- 13.Формирование загружений. Редакторы ▶ Редактор загружений (кнопка 🔛 на панели инструментов).
- •На панели активного режима щелкните по закладке **Добавить загружение** и в раскрывающемся списке выберите **Статическое загружение**.
- •Для выхода из вкладки **Редактор загружений** щелкните мышкой по вкладке Главный вид.
- 14. Назначение нагрузок. Схема ▶ Назначить нагрузки (кнопка с на панели инструментов).
- •В панели активного режима Добавление нагрузок кликните на выпадающий список Библиотека нагрузок ► Нагрузки на узел ► Сосредоточенная сила (по умолчанию указана система координат Глобальная, направление вдоль оси Z) (рис. 1.13).

Рис. 1.1.13. Панель Назначить нагрузки

•В панели Сосредоточенная сила задайте величину силы P=1 кH (рис. 1.13). Правый узел вновь станет белым, и на экране появится стрелка, изображающая сосредоточенную силу (рис. 1.14).

Рис. 1.14. Расчетная схема балки

15.Статический расчет. **Расчет** ▶ **Выполнить расчет** (кнопка на панели инструментов).

•Параметры расчета оставьте по умолчанию и нажмите на кнопку **Запустить** расчет — **Д** Запустить расчет (рис. 1.15).

- •Фон экрана станет черным, но потом снова появится расчетная схема на белом фоне. Если она не появляется и в левом нижнем углу будет надпись: «Задание не выполнено», то для поиска ошибок надо выполнить действия, описанные в разделе 3 (Диагностика ошибок).
- •Если включена галочка **Переходить в результаты после успешного расчета**, то переход в режим результатов расчета осуществляется автоматически.
- •Перейти в режим результатов расчета можно с помощью меню **Расчет Результаты расчета** (кнопка на панели инструментов).
- •В режиме просмотра результатов расчета по умолчанию расчетная схема отображается *не деформированной*.
- 16.Просмотр схемы деформирования. **Результаты** ► Деформированная схема (рис. 1.16).
 - •Верните исходную схему. Результаты У Исходная схема.

Рис. 1.15. Панель активного режима Параметры расчета

Рис. 1.16. Деформированная схема

Приступим к оформлению отчета.

- 17. Приведите в отчете расчетную схему балки с номерами узлов.
- 18. Покажите поперечное сечение.
- 19. Представьте исходные данные в отчете.
- 20.Выведите на экран и представьте в отчете эпюру изгибающих моментов Му, указав значения ординат (рис. 1.17).
- Результаты Результаты по стержням (кнопка 🚧 на панели инструментов)

 ▶ Эпюра Му Эпюра Му → .
- •Вид ► Изменить атрибуты представления модели (кнопка ж на панели инструментов) ► Элементы ► Значения с мозаики.

Убирать галочки с тех команд, которые выбраны по умолчанию, не рекомендуется.

Рис. 1.17. Эпюра изгибающих моментов Му

•Сделайте снимок эпюры Му для создания отчета. Документирование ► Изображение с экрана. Нажмите кнопку 🔊 на панели активного режима Изображение с экрана.

- 21.Выведите на экран и представьте в отчете эпюру поперечных сил Qz, указав значения ординат.
 - •По стеку активных режимов возвратитесь к режиму Результаты по стержням.

•Для выбора эпюры Qz (рис. 1.18) щелкните по кнопке Qz на панели активного режима).

Рис. 1.18. Эпюра поперечных сил Qz

- •Сделайте снимок эпюры Qz для создания отчета. Документирование ► Изображение с экрана, нажмите кнопку 🔊 на панели активного режима Изображение с экрана.
- 22.Формирование и просмотр таблиц результатов расчета. **Результаты** ► **Таблицы результатов** (кнопка на панели инструментов).
- •В боковой панели **Формирование таблиц** выделите название желаемой таблицы **Перемещения узлов в ГСК** (указав при необходимости для выделенных элементов или загружений) (рис. 1.19) и нажмите на кнопку **Сформировать.**
- •Полученная таблица **Перемещения узлов в ГСК** отобразится в нижней части экрана (рис. 1.20).
 - •Выпишите значение перемещения в узле № 1 по оси Z и занесите его в отчет.
 - •Таблицы экспортируют в Word, Excel, Html или сохраняют для документирования.

Рис. 1.19. Формирование таблиц результатов

Номер	Перемещение Z (мм)	Перемещение uY (рад)	Загружение		
1	-0.946	0.00142	1		
2	-0.805	0.00141	1		
3	-0.666	0.00136	1		
4	-0.533	0.00129	1		
5	-0.409	0.00119	1		
6	-0.296	0.00106	1		
7	-0.197	0.000908	1		
8	-0.115	0.000724	1		
9	-0.053	0.000511	1		
10	-0.0137	0.00027	1		
11			1		

Рис. 1.20. Перемещения узлов в ГСК

- •Сохраните изображение в той же папке, где хранятся эпюры, раскрыв список **Таблица узлов** в заголовке таблицы и выбрав команду **Сохранить изображение**.
- 23.Формирование отчета. **Результаты** ► **Формировать отчет** (кнопка на панели инструментов).
- •В диалоговом окне **Формирование отчета** выделите нужные изображения, таблицы, а также фрагменты текста (постоянные части отчетов, которые не изменяются от отчета к отчету) для будущего отчета, каждый раз нажимая кнопку **Добавить** (рис. 1.21).
- •После добавления редактирование местоположения набранных изображений, фрагментов и таблиц осуществляется с помощью кнопок **↓** и **↑**.
 - •Отчеты экспортируются в Word, Excel, PowerPoint, Html.

Рис. 1.21. Диалоговое окно Формирование отчета

- 24. Рассчитайте прогиб под силой при помощи правила Верещагина. Расчет занесите в отчет.
 - 25. Сравните результаты аналитического и численного расчетов.

1.3. Образец выполнения работы

1.3.1. Задание

Для балки (рис. 1.22) требуется:

- выполнить расчет на статические нагрузки;
- вывести на экран деформированную схему, эпюры изгибающих моментов M_y и поперечных сил Q_z ;
- определить прогиб под силой P;
- сравнить результаты аналитического и численного расчетов.

Сечение – двугавр №10Б1. Материал балки – стальной прокат из базы данных ГОСТ 26020-83.

Сосредоточенная сила P = 1,3 кH.

Длина a = 1,4 м.

Рис. 1.22 Расчетная схема балки

1.3.2. Численный расчет

Рис. 1.23 Деформированная схема

Рис. 1.24 Эпюра изгибающих моментов M_{ν}

Рис. 1.25 Эпюра поперечных сил Q_z

Перемещения узлов в ГСК ▼ 🗙								
Номер	Перемещение Z (мм)	Перемещение uY (рад)	Загружение					
1	-8.4388	0.0036166	1					
2	-7.9325	0.0036166	1					
3	-7.4262	0.0036166	1					
4	-6.9199	0.0036166	1					
5	-6.4135	0.0036166	1					
6	-5.9072	0.0036166	1					
7	-5.4009	0.0036166	1					
8	-4.8945	0.0036166	1					
9	-4.3882	0.0036166	1					
10	-3.8819	0.0036166	1					
11	-3.3755	0.0036166	1					
12	-2.8709	0.0035805	1					
13	-2.3764	0.003472	1					
14	-1.9021	0.0032911	1					
15	-1.4582	0.003038	1					
16	-1.0549	0.0027125	1					
17	-0.70211	0.0023147	1					
18	-0.41013	0.0018445	1					
19	-0.18903	0.001302	1					
20	-0.048945	0.00068716	1					
21			1					

Рис. 1.26 Перемещения узлов ГСК

1.3.3. Аналитический расчет

Определение моментов для схемы с загружением P = 1.3 кH:

$$\sum Y = Y - P = Y - 1,3 = 0; Y = 1,3 \text{ kH};$$

 $\sum M = M - P \cdot a = M - 1,3 \cdot 1,4 = 0; M = 1,82 \text{ kHm};$
 $0 \le x \le 1,4 \text{ m}; M_y = Y \cdot x - M = 1,3 \cdot x - 1,82;$
 $x = 0 - M_y = 1,3 \cdot 0 - 1,82 = -1,82 \text{ kHm};$
 $x = 1,4 \text{ m} - M_y = 1,3 \cdot 1,4 - 1,82 = 0 \text{ kHm}.$

Определение моментов для схемы с загружением P = 1 кH:

$$\sum Y = Y - P = Y - 1 = 0; Y = 1$$
 кH;
$$\sum M = M - P \cdot a = M - 1 \cdot 1, 4 = 0; M = 1, 4$$
 кНм;
$$0 \le x \le 1, 4$$
 м: $M_y = Y \cdot x - M = 1 \cdot x - 1, 4$;

$$x = 0 - M_y = 1 \cdot 0 - 1,4 = -1,4$$
 кНм; $x = 1,4$ м — $M_y = 1 \cdot 1,4 - 1,4 = 0$ кНм;

Определение прогиба под силой при помощи правила Верещагина:

$$\begin{split} z &= \sum \int \frac{M_y M_1}{EY} dx = \frac{1}{EY} \left(\frac{1}{2} \cdot 1,82 \cdot 1,4 \cdot \frac{2}{3} \cdot 1,4 \right) = \\ &= \frac{1}{2,06 \cdot 10^8 \cdot 171 \cdot 10^{-8}} \left(\frac{1}{2} \cdot 1,82 \cdot 1,4 \cdot \frac{2}{3} \cdot 1,4 \right) = 3,375 \text{ MM}. \end{split}$$

1.3.4. Сравнение результатов

По итогам численного расчета в программе ЛИРА прогиб под приложенной силой составляет: z=3,3755 мм; что соответствует результатам аналитического ручного расчета: z=3,375 мм.

2. Расчет многопролетной статически определимой балки

2.1. Варианты заданий

Для балки (рис. 2.1) прямоугольного поперечного сечения 20*40 см требуется:

- выполнить расчет на статические нагрузки:
- вывести на экран эпюры изгибающих моментов My и поперечных сил Q;
- определить поперечную силу и изгибающий момент в заданном сечении;
- определить наибольшие значения нормальных напряжений в заданном сечении;
- сравнить результаты аналитического и численного расчетов.

Табл. 2.1. Варианты заданий к ЛБ №2

No	№	1.	q,	,	1-	D	№			M
	расч.	l_1 ,	кН/м	b,	l_2 ,	Р,		а, м	C, M	M,
варианта	схемы	M		M	M	кН	сечения	Í		кН∙м
1	1	10	1,2	1,0	8	3	1	1,0	1,0	2,0
2	2	14	2,0	0,8	7	2,5	2	1,2	2,2	2,2
3	3	8	1,8	1,9	9	6	3	2,0	1,4	2,7
4	4	12	3,0	1,4	6	2,8	4	2,2	1,6	2,4
5	5	9	1,5	1,6	11	7	1	1,3	1,8	2,5
6	6	11	2,5	2,1	10	3,3	2	2,1	2,0	1,1
7	7	7	1,4	1,2	12	5	3	1,4	1,1	2,6
8	8	6,6	0,9	1,8	15	10	4	1,9	1,3	4
9	9	5	1,0	1,5	14	4	1	1,5	1,5	2,8
10	0	13	2,2	2,0	14	3,2	3	0,8	1,7	1,5
11	1	10	1,5	1,0	8	3	1	1,0	1,0	2,6
12	2	14	2,5	0,8	7	2,5	2	1,2	2,2	4
13	3	8	1,4	1,9	9	6	3	2,0	1,4	2,8
14	4	12	0,9	1,4	6	2,8	4	2,2	1,6	1,5
15	5	9	1,0	1,6	11	7	1	1,3	1,8	2,0
16	6	11	2,2	2,1	10	3,3	2	2,1	2,0	2,2
17	7	7	1,2	1,2	12	7	3	1,4	1,1	2,7
18	8	6,6	2,0	1,8	15	3,3	4	1,9	1,3	2,4
19	9	5	1,8	1,5	14	5	1	1,5	1,5	2,5
20	0	13	3,0	2,0	14	10	3	0,8	1,7	1,1
21	1	10	1,5	1,0	8	4	1	1,0	1,0	2,6
22	2	14	2,5	0,8	7	3,2	2	1,2	2,2	4
23	3	8	1,8	1,9	9	3	3	2,0	1,4	2,8
24	4	12	3,0	1,4	6	2,5	4	2,2	1,6	2,4
25	5	9	1,5	1,6	11	6	1	1,3	1,8	2,5
26	6	11	2,5	2,1	10	2,8	2	2,1	2,0	1,1
27	7	7	1,4	1,2	12	7	3	1,4	1,1	2,6
28	8	6,6	0,9	1,8	15	3,3	4	1,9	1,3	4
29	9	5	1,0	1,5	14	5	1	1,5	1,5	2,8

Материал балки — бетон В30 по СП-52-101—2003. Поперечное сечение - прямоугольное 20*40 см. Исходные данные выбираются в соответствии с рис. 2.1 и табл. 2.1.

Рис. 2.1. Расчетные схемы

2.2. Алгоритм расчета в ПК ЛИРА 10.4^2

Условие задания:

Для балки (рис. 2.2) прямоугольного поперечного сечения 20*40 см требуется:

- •выполнить расчет на статические нагрузки;
- •вывести на экран эпюры изгибающих моментов Му и поперечных сил Qz;
- •определить поперечную силу и изгибающий момент в сечении 1;
- •определить наибольшие значения нормальных напряжений в заданном сечении;
- •сравнить результаты аналитического и численного расчетов. Материал балки бетон B25 по СП-8-101—2003. Интенсивность постоянной равномерно распределенной нагрузки q = 0.8 кH. Величина сосредоточенной силы P = 0.7 кH, а сосредоточенного момента M = 1.5 кH*м. Заданное сечение 1 показано на схеме красным цветом.

Рис. 2.2. Многопролетная балка

Методические указания к выполнению лабораторной работы №2

- 1. Приступим к созданию расчетной схемы.
- 2.Запуск программы.
- 3.В редакторе начальной загрузки **Новый проект** выберите **Создать новый проект** и задайте параметры проекта:
 - •имя Задача 2;
 - •описание Расчет многопролетной балки;
- •тип создаваемой задачи (2) Плоская рама (X, Z, UY). X, Z, UY возможные линейные и угловые перемещения узлов;
 - •нажмите кнопку Создать.
- 4. Создание геометрии расчетной схемы. **Схема** ► Добавить пространственную раму (кнопка на панели инструментов):

² [1]

Рис. 2.3. Заполнение шаблона

•Заполните параметры шаблона для создания балки, разбив ее на шаги. Границами шага разбивки являются опоры, сечения, в которых приложены сосредоточенные силы и моменты, границы действия распределенных нагрузок, сечения, в которых надо определять внутренние силовые факторы (рис. 2.3).

- •Щелкните по кнопке Использовать фрагмент.
- •С помощью курсора мыши необходимо созданный фрагмент добавить к расчетной схеме. Для этого курсор мыши подведите к пересечению точечных линий на сети построений (это точка (0;0;0) глобальной системы координат) и при возникновении значка 🛕 подтвердите щелчком мыши точку вставки фрагмента схемы.

- 5.Вывод на экран номеров узлов. **Вид ▶ Изменить атрибуты представления** модели (кнопка ин панели инструментов).
- •В панели активного режима **Атрибуты представления** в ветке **Элементы** установите флажок **Номер** (рис. 2.4, а).
- •В панели активного режима **Атрибуты представления** в ветке **Узлы** установите флажок **Номер** (рис. 2.4, б).
 - •Уберите флажок с команды Использовать выделенные объекты.
 - •Уберите флажок с команды Добавить префиксы к значениям.
 - •Щелкните по кнопке Назначить (рис. 2.4).

Те выделения (галочки), которые даются программой по умолчанию снимать не рекомендуется.

Рис. 2.4. Вывод на экран номеров: а — элементов; б — узлов

6.Назначение шарнира. **Схема** ► **Назначить шарниры** (кнопка **11** на панели инструментов) (рис. 2.6).

•Не следует путать связи и врезные шарниры. *Связи* — это опоры. Они соединяют элемент с землей. В связях указываются направления, по которым запрещены перемещения. Врезные шарниры соединяют элементы. Для шарниров указываются направления, по которым разрешены перемещения.

•Выделите элемент № 1 (рис. 2.5), в котором справа находится врезной шарнир. Для вызова панели активного режима **Параметры выбора объекта** одновременно нажмите клавиши Ctrl + Shift. Не отпуская их, двигая курсором справа налево, выделите элемент № 1 (элемент окрасится в красный цвет).

•В панели активного режима Назначить шарниры с помощью установки флажка укажите Направление шарнира — Поворот относительно оси Y (UY).

Рис. 2.5. Расчетная схема с номерами узлов и элементов

•На этой же панели в разделе **Политика назначения** надо показать, что врезной шарнир примыкает ко второму (правому) узлу выделенного элемента.

•Отмечая флажком **Индикация назначения**, предварительно можно увидеть заданный шарнир , где три верхних цвета обозначают перемещение вдоль X, Y, Z, а три нижних — поворот относительно осей X, Y, Z (цвет наложенных связей отвечает цвету осей).

- •После этого шелкните по кнопке Назначить.
- •Аналогично выделите элемент № 4 и врежьте шарнир, примыкающий к первому (левому) узлу элемента.

Рис. 2.6. Назначение врезных шарниров

7.Упаковка схемы. **Правка** ▶ **Упаковать модель** (кнопка ६ на панели инструментов). В диалоговом окне **Упаковка модели** щелкните по кнопке **Упаковать** (эта команда осуществляет «сшивку» совпадающих элементов и узлов).

8.Выделение третьего и первого узлов, имеющих шарнирно- подвижные опоры. Выбор ▶ Выбрать объекты (кнопка на панели инструментов). После появления панели активного режима Параметры выбора объектов с помощью курсора выделите

узлы № 3 и 1 (узлы окрасятся в красный цвет). По умолчанию отметка узлов выполняется с помощью прямоугольной рамки. При движении рамки налево элементы и узлы выделяются полным попаданием либо касанием, а при движении рамки направо — только полным попаданием.

Выделение узлов и элементов можно производить при нажатых клавишах Ctrl + Shift. Преимущество этого способа вызова панели активного режима **Параметры выбора объектов** заключается в том, что после отпускания клавиш Ctrl + Shift панель активного режима предыдущей команды не исчезает с экрана и не надо использовать стек активных режимов, чтобы снова вызвать ее.

9.Задание связей для узлов № 3 и 1. Схема **Назначить связи**. На панели активного режима **Назначить связи** отметьте галочкой запрещенное перемещение в направлении Z (рис. 2.7). Щелкните по кнопке **Закрепить** (красный цвет у узлов исчезнет).

Под узлами будут изображаться связи, запрещающие линейные перемещения

10.Выделение левого узла балки (узла № 5). Для вызова панели активного режима **Параметры вызова объекта** одновременно нажмите клавиши Ctrl + Shift. Не отпуская их, курсором выделите правый узел балки (*узел окрасится в красный цвет*).

11.Задание связей узлу № 5. Схема Назначить связи. На панели активного режима Назначить связи отметьте галочкой запрещенные перемещения. Так как узел № 5 имеет жесткую заделку, надо запретить линейные перемещения в направлении осей X, Z и поворот вокруг оси Y (рис. 2.7). Щелкните по кнопке Закрепить (красный цвет у узла исчезнет). Под узлом будут изображаться связи, запрещающие линейные перемещения

Рис. 2.7. Назначение связей: а — для шарнирно-подвижных опор; б — для заделки

Если связей недостаточно для обеспечения кинематической неизменяемости конструкции, то программа считать не будет и даст надпись «Геометрически изменяемая система».

- 12.Выделение всех элементов балки. Выбор ► Выбрать все узлы и элементы (Ctrl + A).
- 13.Задание сечений. **Редакторы** ▶ **Редактор сечений/жесткостей** (кнопка панели инструментов) ▶ **Параметрические сечения** (рис. 2.8).
- •Из категории Параметрическое сечение выберите тип сечения Брус (на экран выводится панель для задания геометрических размеров выбранного типа сечения).
- •На панели **Параметрические сечения стержней** задайте параметры сечения Брус: геометрические размеры B = 20 см; H = 40 см.
- •Эскиз создаваемого сечения со всеми размерами изобразится на экране при корректном вводе геометрических размеров.
- •Для выхода из **Редактора сечений/жесткостей** щелкните мышкой по вкладке Главный вид.

Рис. 2.8. Выбор сечения

- 14.Задание материала. Редакторы ▶ Редактор материалов (кнопка № на панели инструментов) (рис. 2.53).
- •Выберите из категории **Материал из базы данных** ► **Бетон из базы данных** ► **СП-52-101—2003**. Затем в классе бетона по прочности укажите B25.
- •Для выхода из **Редактора материалов** щелкните мышкой по вкладке **Главный** вил.

Рис. 2.9. Задание материала

- 15.Назначение сечений и материалов элементам расчетной схемы. Конструирование▶ Назначить сечение, материал и параметры конструирования (кнопка и панели инструментов).
- •На панели активного режима **Назначить жесткости** в **Параметрах назначения** укажите радиокнопкой **Использовать сечение и материал**.
- - •Нажмите на кнопку Назначить.
- 16.Формирование загружений. Редакторы ▶ Редактор загружений (кнопка на панели инструментов).
- •На панели активного режима щелкните по закладке Добавить загружение и в раскрывающемся списке выберите Статическое загружение.
- •Для выхода из вкладки **Редактор загружений** щелкните мышкой по вкладке Главный вид.
- •Выделите элемент № 2. Для вызова панели активного режима **Параметры вызова объекта** одновременно нажмите клавиши Ctrl + Shift. Не отпуская их, двигая курсор справа налево, выделите элемент № 2 (элемент окрасится в красный цвет).
- •В панели активного режима Добавление нагрузок кликните на выпадающий список Библиотека нагрузок ► Нагрузки на стержень ► Равномерно распределенная сила (по умолчанию указана система координат Глобальная, направление вдоль оси Z).
- •В панели **Равномерно распределенная сила** задайте интенсивность нагрузки P = 0.8 кН/м (рис. 2.10, а) (*красный цвет у элементов исчезнет*, и на экране появятся стрелки, изображающие распределенную силу).
- •Сила считается положительной, если она направлена вниз, т.е. в сторону, противоположную оси Z.
 - •Выделите курсором узел № 2, нажав кнопки Ctrl + Shift.
- •В панели активного режима Добавление нагрузок кликните на выпадающий список Библиотека нагрузок ► Нагрузки на узел ► Сосредоточенная сила (по умолчанию указана система координат Глобальная, направление вдоль оси Z).

Рис. 2.10. Назначение нагрузок:

- а равномерно распределенная нагрузка; б сосредоточенный момент
- •На панели Сосредоточенная сила задайте величину силы P = 0.7 кH (рис. 2.10) (элемент вновь станет белым, u на экране появится стрелка, изображающая сосредоточенную силу).
 - •Выделите курсором узел № 1, нажав кнопки Ctrl + Shift.
- •В панели активного режима Добавление нагрузок кликните на выпадающий список Библиотека нагрузок ► Нагрузки на узел ► Сосредоточенный момент (по умолчанию указана система координат Глобальная).
 - •Не забудьте указать, что момент действует вокруг оси Ү!
- •Надо указать знак внешнего момента. *Момент считается положительным, если,* глядя с конца оси Y, он поворачивает балку по часовой стрелке. Ось Y на экране направлена от нас, следовательно, глядя на экран, момент, действующий против часовой стрелки, получает знак плюс.
- •На панели **Сосредоточенный момент** задайте величину момента M = 1.5 кH (рис. 2.10, 6) (элемент вновь станет белым, и на экране появится стрелка, изображающая сосредоточенную силу).

18.Статический расчет. **Расчет** ▶ **Выполнить расчет** (кнопка на панели инструментов).

•Параметры расчета оставьте по умолчанию и нажмите на кнопку Запустить расчет . Фон экрана станет черным, но потом снова появится ваша расчетная схема на белом фоне. Если расчетная схема не появляется и в левом нижнем углу будет надпись «Задание не выполнено», для поиска ошибок надо выполнить действия, описанные в разделе 3 (Диагностика ошибок).

•Если включена галочка **Переходить в результаты после успешного расчета**, переход в режим результатов расчета осуществляется автоматически.

•Переход в режим результатов расчета можно осуществить с помощью меню Расчет ▶ Результаты расчета (кнопка // на панели инструментов).

•В режиме просмотра результатов расчета по умолчанию расчетная схема отображается не деформированной.

Приступим к оформлению отчета

19. Приведите в отчете расчетную схему балки с номерами узлов и элементов (рис. 2.11). Обратите внимание, что элементы нумеруются слева направо, а узлы справа налево. Номера узлов иногда плохо видны, так как расположены строго над узлами и могут быть скрыты нагрузками, приложенными к этим узлам.

Рис. 2.11. Изображение расчетной схемы многопролетной балки на экране

- 20. Покажите поперечное сечение.
- 21. Представьте исходные данные в отчете.
- 22.Выведите на экран эпюру изгибающих моментов Му (рис. 2.12), указав значения ординат.
- Результаты Результаты по стержням (кнопка на панели инструментов)

 В Эпюра Му. В Эпюра Му В Эпюра Му. В Эпира Му. В Эпира

•Вид ► Изменить атрибуты представления модели (кнопка инструментов) ► Элементы ► Значения с мозаики.

Рис. 2.12. Эпюра изгибающих моментов Му

23.Выведите на экран эпюру поперечных сил Qz (рис. 2.13), указав значения ординат.

Рис. 2.13. Эпюра поперечных сил Qz

24.Определите поперечную силу и изгибающий момент в заданном сечении. Величины Му и Qz для заданного сечения можно взять из эпюр или из таблиц результатов расчета. Результаты ▶ Таблицы результатов (кнопка на панели инструментов);

•В боковой панели **Формирование таблиц** выделите название желаемой таблицы **Усилия в стержневых элементах** (указав при необходимости для выделенных элементов или загружений) (рис. 2.14) и нажмите на кнопку **Сформировать**.

Рис. 2.14. Формирование таблиц результатов

•Полученная таблица **Усилия в стержневых элементах** отобразится в нижней части экрана (рис. 2.15).

•Заданное сечение находится левее узла 3. Левее узла 3 находится элемент 2, для которого в таблице представлены величины Му и Qz в трех сечениях. Выпишите значения Му и Qz в сечении 3 элемента 2 и занесите их в отчет.

Номер	HC	Му (кН*м)	Qz (κH)	Загружение		
1	1	3.4	-1.13	1		
1	2	1.7	-1.13	1		
1	3		-1.13	1		
2	1		-1.13	1		
2	2	-1.53	-1.93	1		
2	3	-3.87	-2.73	1		
3	1	-3.87	1.38	1		
3	2	-1.93	1.38	1		
3	3		1.38	1		

Рис. 2.15. Усилия в стержневых элементах

25.Выполните аналитический расчёт многопролетной статически определимой балки. Расчет занесите в отчет.

- 26. Сравните результаты аналитического и численного расчетов.
- 27. Аналитически рассчитайте наибольшие нормальные напряжения в заданном сечении (b = 0,2 м; h = 0,4м).

2.3. Образец выполнения работы

2.3.1. Задание

Для балки (рис. 2.16) прямоугольного поперечного сечения 20х40 см требуется:

- выполнить расчет на статические нагрузки;
- вывести на экран эпюры изгибающих моментов M_{ν} и поперечных сил Q;
- определить поперечную силу и изгибающий момент в сечении 4;
- определить наибольшие значения нормальных напряжений в заданном сечении;
- сравнить результаты аналитического и численного расчетов.

Материал балки — бетон В30 по СП-52-101-2003. $l_1=6$ м; b=1,8 м; $l_2=15$ м; a=1,9 м; c=1,3 м;. Интенсивность постоянной равномерно распределенной нагрузки q=0,8 кH/м. Величина сосредоточенной силы P=8 кH, а сосредоточенного момента M=3 кH · м. Заданное сечение показано на схеме.

Рис. 2.16 Многопролетная балка

2.3.2. Численный расчет

Расчетные свойства сечения										
Geomes: A 4463		Момент инерции		Ядровые расстояния				Срезные площади		Угол главных осей
Площадь A, м^2 ly1, м^4 lz1, м^4		lх1, м^4	Y+, M	Ү-, м	Z+, M	Z-, м	Ау1, м^2	Az1, m^2	Fi, рад	
0.08	0.0010667	0.00026667	0.00075378	0.033333	-0.033333	0.066667	-0.066667	0.066667	0.066667	0

Рис. 2.17 Расчетные свойства сечения балки

Рис. 2.18 Статическое загружение N_21

Рис. 2.19 Эпюра изгибающих моментов M_{y}

Рис. 2.20 Эпюра поперечных сил $Q_{\scriptscriptstyle Z}$

Усилия в стержневых элементах

Номер	HC	Му (кН*м)	Qz (κH)	Плотность энергии (КПа)	Загружение	
1	1	-9.52	3.9867	0.01634	1	
1	2	-1.16	1.5867	0.0002426	1	
1	3		-0.81333		1	
2	1		-0.81333		1	
2	2	-0.52867	-0.81333	5.0389E-05	1	
2	3	-1.0573	-0.81333	0.00020155	1	
3	1	-4.0573	-0.81333	0.0029679	1	
3	2	-9.6287	-0.81333	0.016715	1	
3	3	-15.2	-0.81333	0.041654	1	
4	1	-15.2	8	0.041654	1	
4	2	-7.6	8	0.010413	1	
4	3		8		1	

Рис. 2.21 Усилия в стрежневых элементах

Рис. 2.22 Нормальные напряжения

2.3.3. Аналитический расчет

Определение опорных реакций:

$$\sum M_C = -M - Y_B \cdot 15 + P \cdot 16,9 = -3 - Y_B \cdot 15 + 8 \cdot 16,9 = 0; Y_B = 8,81$$
 кH;
 $\sum Y = Y_A - q \cdot 6 + Y_B - P = Y_A - 0,8 \cdot 6 + 8,81 - 8 = 0; Y_A = 3,99$ кH;
 $\sum M_C = Y_A \cdot 6 - M_A - q \cdot 6 \cdot 3 = 3,99 \cdot 6 - M_A - 0,8 \cdot 6 \cdot 3 = 0; M_A = 9,54$ кНм.
 Построение эпюр поперечных сил и изгибающих моментов:

$$\begin{split} 0 &\leq x \leq 6 \text{ m} \colon Q_z = Y_A - q \cdot x = 3,99 - 0,8 \cdot x ; M_y = Y_A \cdot x - M_A - q \cdot x \cdot \frac{x}{2} = \\ &= 3,99 \cdot x - 9,54 - 0,8 \cdot x \cdot \frac{x}{2} = -0,4 \cdot x^2 + 3,99 \cdot x - 9,54; \\ x &= 0 - Q_z = 3,99 \text{ kH}; \ M_y = -9,54 \text{ kHm}; \\ x &= 6 \text{ m} - Q_z = 3,99 - 0,8 \cdot 6 = -0,81 \text{ kH}; \\ M_y &= -0,4 \cdot 6^2 + 3,99 \cdot 6 - 9,54 = 0. \\ 6 &\leq x \leq 7,3 \text{ m} \colon Q_z = Y_A - q \cdot 6 = 3,99 - 0,8 \cdot 6 = -0,81 \text{ kH}; \\ M_y &= Y_A \cdot x - M_A - q \cdot 6 \cdot (x - 3) = 3,99 \cdot x - 9,54 - 0,8 \cdot 6 \cdot (x - 3) = \\ &= -0,81 \cdot x + 4,86; \\ x &= 6 \text{ m} - M_y = -0,81 \cdot 6 + 4,86 = 0; \end{split}$$

$$x=7,3$$
 м — $M_y=-0,81\cdot 7,3+4,86=-1,05$ кНм. $7,3\leq x\leq 21$ м: $Q_z=Y_A-q\cdot 6=3,99-0,8\cdot 6=-0,81$ кН; $M_y=Y_A\cdot x-M_A-q\cdot 6\cdot (x-3)-M=3,99\cdot x-9,54-0,8\cdot 6\cdot (x-3)-3=-0,81\cdot x+1,86;$ $x=7,3$ м — $M_y=-0,81\cdot 7,3+1,86=-4,05$ кНм; $x=21$ м — $M_y=-0,81\cdot 21+1,86=-15,15$ кНм. $21\leq x\leq 22,9$ м: $Q_z=Y_A-q\cdot 6+Y_B=3,99-0,8\cdot 6+8,81=8$ кН; $M_y=Y_A\cdot x-M_A-q\cdot 6\cdot (x-3)-M+Y_B\cdot (x-21)=3,99\cdot x-9,54-0,8\cdot 6\cdot (x-3)-3+8,81\cdot (x-21)=8\cdot x-183,15;$ $x=21$ м — $M_y=8\cdot 21-183,15=-15,15$ кНм; $x=22,9$ м — $M_y=8\cdot 22,9-183,15=0$.

Наибольшие нормальные напряжения в сечении 4:

$$\sigma_{max} = \frac{M_y}{I_v} z = \frac{15,15}{0,00107} \cdot 0,2 = 2831,78 \text{ kH/m}^2.$$

2.3.4. Сравнение результатов

По итогам численного расчета в программе ЛИРА величина поперечной силы и изгибающего момента в заданном сечении составляет: $Q=-0.81333~{\rm kH};$ $M=-15.2~{\rm kHm},$ что соответствует результатам ручного расчета: $Q=-0.81~{\rm kH};$ $M=-15.15~{\rm kHm}.$

Наибольшие нормальные напряжения в заданном сечении при расчете в программе ЛИРА составили: $\sigma_{max}=2850~{\rm kH/m^2};$ при аналитическом ручном расчете: $\sigma_{max}=2831,78~{\rm kH/m^2}.$ Разность результатов составляет 0,64%.

3. Расчет железобетонной плиты

3.1. Варианты заданий

Для железобетонной плиты (рис. 3.1) требуется:

- 1)выполнить расчет плиты на статические нагрузки для трех случаев загружения (рис. 3.2);
- 2)вывести на экран деформированные схемы и изополя перемещений по направлению Z;
 - 3) определить наибольшие значения прогибов пластины для всех случаев нагружения;
- 4)вывести на экран изополя погонных изгибающих моментов Мх и поперечных сил Qx;
- 5) определить наибольшие значения погонных изгибающих моментов Мх и поперечных сил Qx;
 - 6)составить таблицу расчетных сочетаний усилий (РСУ) и произвести расчет РСУ;
- 7) для среднего элемента плиты просмотреть результаты РСУ и определить, при каких сочетаниях усилий получены наибольшие значения Мх и Qх;
 - 8) произвести численную проверку в программе SCAD++;
 - 9) произвести аналитическую проверку полученных результатов;
 - 10) произвести сравнение полученных результатов.

Номера вариантов указаны в табл. 3.1.

Рис. 3.1. Железобетонная плита

Короткие стороны плиты оперты по всей длине. Длинные стороны плиты — свободны. Шаг сети КЭ — 0.5 м. Материал плиты — бетон ВЗ5.

Заданные нагрузки:

- загружение 1 собственный вес;
- загружение 2 сосредоточенные силы P и P1 приложенные к срединным узлам плиты, параллельным короткой стороне, нагрузка P1 приложена к крайним узлам;
- загружение 3 сосредоточенные моменты M и M1, приложенные к коротким сторонам плиты, сосредоточенный момент M1 приложен к крайним узлам.

Табл. 3.1. Варианты заданий к ЛР №3

		ы эшдинни к					
№ варианта	<i>l</i> , м	<i>b</i> , м	<i>h</i> , м	<i>P</i> , кН	₽1, кН	<i>М</i> , кН*м	<i>М</i> 1, кН*м
1	8	3.5	0.2	9	4.5	10	5
2	6	3	0.15	8	4	16	8
3	7	4	0.2	12	6	8	4
4	9	4	0.3	13	6.5	6	3
5	5	3	0.15	15	7.5	8	4
6	9	3.5	0.15	6.5	9	4	10
7	7	3	0.15	4	8	8	16
8	6	4	0.2	8	12,5	7	8
9	6	4	0.3	6.5	13	3	6
10	7	3	0.15	7.5	15	4	8
11	9	3.5	0.2	9	4.5	6	3
12	5	3	0.15	8	4	8	4
13	6	4	0.2	12	6	10	5
14	7	4	0.3	13	6.5	16	8
15	8	3	0.15	15	7.5	8	4
16	6	3.5	0.2	4.5	9	6	3
17	7	3	0.15	4	8	8	4
18	9	4	0.2	6	12	5	10
19	5	4	0.3	6.5	13	8	16
20	6	3	0.15	7.5	15	4	8
21	7	3.5	0.2	9	4.5	3	6
22	8	3	0.15	8	4	4	8
23	6	3	0.3	13	6.5	6	3
24	7	4	0.15	15	7.5	8	4
25	9	4	0.15	15	7.5	8	4
26	5	3	0.2	4.5	9	6	3
27	6	3.5	0.15	4	8	8	4
28	7	3	0.2	6	12	5	10
29	8	3	0.3	6.5	13	8	16
30	6	4	0.15	7.5	15	4	8
31	7	4	0.2	9	4.5	3	6
32	9	3	0.15	8	4	4	8
33	5	3.5	0.15	8	4	4	8

3.2. Алгоритм расчета в ПК ЛИРА 10.4^3

Условие задания

Для железобетонной плиты (рис. 3.2) размером 6×3 м и толщиной 20 см требуется:

- 1) выполнить расчет плиты на статические нагрузки для трех случаев загружения (рис. 3.2);
- 2) вывести на экран деформированные схемы и изополя перемещений по направлению Z;
- 3) определить наибольшие значения прогибов пластины для всех случаев нагружения;
- 4) вывести на экран изополя погонных изгибающих моментов Мх и поперечных сил Qx;
- 5) определить наибольшие значения погонных изгибающих моментов Мх и поперечных сил Qx;
 - 6) произвести расчет нижнего армирования по направлению X;
 - 7) вывести на экран результаты расчета армирования;
 - 8) составить таблицу расчетных сочетаний усилий (РСУ) и произвести их расчет;
- 9) для среднего элемента плиты просмотреть результаты РСУ и определить, при каких сочетаниях усилий получены наибольшие значения Мх и Qх;
 - 10) произвести аналитическую проверку полученных результатов.

Рис. 3.2. Железобетонная плита

³ [1]

Короткие стороны плиты оперты по всей длине. Длинные стороны плиты — свободны.

Заданные нагрузки:

- загружение 1 собственный вес (рис. 3.2, a);
- загружение 2 сосредоточенные силы P = 10 кH и $P_1 = 5$ кH, приложенные к срединным узлам плиты, параллельным короткой стороне (рис. 3.2, б);
- загружение 3 сосредоточенные моменты M = 10 к $H*_M$ и M1= 5 к $H*_M$, приложенные к коротким сторонам плиты (рис. 3.2, в).

Расчет производится для сетки 12×6. Материал плиты — бетон БД (B25). Модуль упругости $E=3\cdot10^7$ кH/м²; коэффициент Пуассона $\mu=V=0.2$; удельный вес материала плиты $\gamma=\text{Ro}=24,5$ кH/м³.

Методические указания к лаборатороной работе №3

Приступим к созданию расчетной схемы.

- 1. Запуск программы.
- 2. В редакторе начальной загрузки **Новый проект** выберите **Создать новый проект** и задайте параметры проекта:
 - имя Задача 3;
 - описание Расчет плиты;
- тип создаваемой задачи (3) **Плоская плита или ростверк** (Z, UX, UY). Z, UX, UY возможные линейные и угловые перемещения узлов.
 - Нажмите кнопку Создать.
- 3. Создание геометрии расчетной схемы. Схема ► Добавить фрагмент плоской плиты (кнопка ин панели инструментов);
- Заполните параметры шаблона для создания плиты. Шаг вдоль оси X 6 м, Повторов 1, Число конечных элементов N 12. Шаг вдоль оси Y 3 м, Повторов 1, Число конечных элементов N 6 (рис. 3.3).
 - Щелкните по кнопке Использовать фрагмент.
- С помощью курсора мыши созданный фрагмент добавьте к расчетной схеме. Для этого курсор мыши подведите к пересечению точечных линий на сети построений (это точка (0;0;0) глобальной системы координат) и при возникновении значка подтвердите щелчком мыши точку вставки фрагмента схемы.

Рис. 3.3. Задание параметров плиты

Измените параметры сети построения, нажав на кнопку $\mathbf{Ceт}_{\mathbf{b}}$ в левом нижнем углу экрана. Поставьте Шаг — 0.5, Количество — 12.

Рис. 3.4

- 4. Задание граничных условий. **Схема** ► **Назначить связи** (кнопка на панели инструментов).
- Нажав одновременно на кнопки Ctrl + Shift, выделите курсором все узлы на коротких сторонах плиты (рис. 3.2) (узлы окрасятся в красный цвет).
- Так как закрепление шарнирное, в панели активного режима **Назначить связи**, с помощью установки флажка, запретите перемещение в направлении оси Z (красный цвет у узлов исчезнет. Под узлами будут изображаться связи, запрещающие линейные перемещения. Цвет связей (красный) соответствует цвету оси Z, в направлении которой запрещено перемещение).
 - Щелкните по кнопке Закрепить.

- В панели Сечения плит задайте толщину пластины h = 20 см (рис. 3.5).
- Поставьте галочку Подбор арматуры, настройки оставьте по умолчанию.

Рис. 3.5. Задание сечений

- Чтобы увидеть, что в списке сечений изменилась толщина, надо щелкнуть курсором по левой части окна активного режима Сечения.

- Для выхода из **Редактора сечений/жесткостей** щелкните мышкой по вкладке Главный вид.
- 6. Задание материала. **Редакторы** ▶ **Редактор материалов** (кнопка на панели инструментов).
 - Выберите из категории Линейный материал > Изотропный материал.

- Задайте: модуль упругости E = 3.107 КПа (3e7); коэффициент Пуассона Nu = 0.2; объемный вес $\gamma = 24.5$ кН/м3 (рис. 3.6). *Буква е набирается в латинском алфавите*.
- Для выхода из **Редактора материалов** щелкните мышкой по вкладке **Главный** вид.

Рис. 3.6. Задание материала

- 7. Назначение сечений и материалов элементам расчетной схемы. **Конструирование** ► **Назначить сечение, материал и параметры конструирования** (кнопка на панели инструментов).
- Выделение всех элементов плиты. **Выбор ▶ Выбрать все узлы и элементы** (Ctrl + A).
- На панели активного режима **Назначить жесткости** в **Параметрах назначения** укажите радиокнопкой **Использовать сечение и материал**.
- Затем в **Доступных сечениях** выберите 1. Пластина (0.15), в **Доступных** материалах 1. Линейно-изотропный материал (рис. 3.7).
 - Нажмите кнопку Назначить.

Рис. 3.7. Назначение жесткости

8. Формирование загружений. **Редакторы** ▶ **Редактор загружений** (кнопка на панели инструментов).

- На панели активного режима щелкните по закладке **Добавить загружение** и добавьте 3 статических загружения.
 - Выберите нормы проектирования из выпадающего списка

- Затем, делая поочередно активными загружения, задайте: для Статического загружения 1 выберем: Вид загружения ▶ Постоянное; для Статического загружения 2 выберем: Вид загружения ▶ Длительное; для Статического загружения 3 выберем: Вид загружения ▶ Кратковременное.
- Щелкните в левой части панели **Загружения** на **Библиотеку загружений**
- В правой части панели **Загружения** в окне **Параметров загружения** выберите **Объединяемые перемещения**

- Для выхода из вкладки **Редактор загружений** щелкните мышкой по вкладке Главный вид.
- 9. Назначение нагрузок. **Схема** ► **Назначить нагрузки** (кнопка на панели инструментов).
 - Формирование загружения № 1. Выберите 1. Статическое загружение.

- Выделение всех элементов балки. **Выбор ▶ Выбрать все узлы и элементы** (Ctrl + A) (узлы и элементы примут красный цвет).
- В панели активного режима Добавление нагрузок кликните на выпадающий список Библиотека нагрузок ► Собственный вес: ► Собственный вес.

- Щелкните по кнопке **Назначить**. Элементы автоматически загружаются нагрузкой собственного веса (*красный цвет у элементов исчезнет, и на экране появятся стрелки, изображающие распределенную силу, соответствующую собственному весу плиты. Сила считается положительной, если она направлена вниз, т.е. в сторону, противоположную оси Z).*
- Для того, чтобы увидеть распределенную нагрузку на экране, представьте плиту в аксонометрической проекции **Вид** ▶ **Вращать модель** ▶ Дополнительный вид (рис. 3.2, а).
- *Формирование загружения № 2.* Смена номера загружения. Выберите **2.** Статическое загружение.

Выделите курсором два узла, находящихся в серединах длинных сторон пластины, параллельных оси X (рис. 3.2, б). Назначить нагрузки ▶ Библиотека нагрузок ▶Нагрузки на узел ▶ Сосредоточенная сила ▶ P1 = 5 кН ▶ Назначить.

Выделите курсором остальные срединные узлы, расположенные параллельно оси Y (рис. 3.2, б). Назначить нагрузки ► Библиотека нагрузок ► Нагрузки на узел ► Сосредоточенная сила ► P = 10 кН ► Назначить.

- *Формирование загружения № 3*. Смена номера загружения. Выберите **3.** Статическое загружение.
- Выделите остальные узлы левой короткой стороны пластины (рис. 3. 2, в). Приложите к ним сосредоточенные моменты M = -10 кH*m.
- Задание симметричных сосредоточенных моментов для правой стороны плиты (рис. 3.2, в). К правой короткой стороне плиты приложите такие же по величине моменты,

как и к левой стороне, но противоположные по знаку (отрицательные) M1 = 5 кH*M, M = 10 кH*M.

- Параметры расчета оставьте по умолчанию и нажмите на кнопку **Запустить** расчет ...
- Если включена галочка **Переходить в результаты после успешного расчета**, переход в режим результатов расчета осуществляется автоматически.
- Перейти в режим результатов расчета можно с помощью меню Расчет ►
 Результаты расчета (кнопка на панели инструментов).
- В режиме просмотра результатов расчета по умолчанию расчетная схема отображается *не деформированной*.

Приступим к оформлению отчета.

- 11. Представьте в отчете расчетную схему плиты, указав величины нагрузок, геометрические размеры и жесткостные характеристики.
- Смена номера текущего загружения производится на панели инструментов в выпадающем списке **Статическое загружение**.
 - Верните исходную схему. Результаты ▶ Исходная схема
- 13. Выведите на экран изополя перемещений по направлению Z для всех случаев нагружения. Результаты ▶ Результаты по узлам ▶ Перемещение по Z . .
 - Внесите в отчет наибольшие по абсолютной величине значения прогиба.
- 14. Выведите на экран изополя погонных изгибающих моментов Мх.и поперечных сил Qx для трех случаев загружения (рис. 3.8) **Результаты ▶ Результаты по пластинам** ▶ **Напряжение (Мх) или (Qх)** (кнопка на панели инструментов, а затем Напряжение Мх или Напряжение Ох на панели активного режима).

На рис. 3.8 слева представлены изополя Mx, справа Qx.

Рис. 3.8. Изополя изгибающих моментов и поперечных сил: а — загружение 1; б — загружение 2; в — загружение 3

- 15. Формирование и просмотр таблиц результатов расчета внутренних силовых факторов. **Результаты** ► **Таблицы результатов** (кнопка на панели инструментов).
- Нажав кнопки Ctrl + Shift, выделите курсором один из средних элементов плиты. По умолчанию отметка узлов и элементов выполняется с помощью прямоугольной рамки. При движении рамки налево элементы и узлы выделяются полным попаданием либо касанием, а при движении рамки направо только полным попаданием.
- В боковой панели **Формирование таблиц** выделите название таблицы **Усилия в пластинчатых элементах у**силия в пластинчатых элементах (указав для выделенных элементов) (рис. 3.9) и нажмите на кнопку **Сформировать**.

Рис. 3.9. Формирование таблиц результатов

- Полученная таблица **Усилия в пластинчатых элементах** отобразится в нижней части экрана (рис. 3.10).
 - Выпишите значения Мх и Qх для всех случаев нагружения и занесите их в отчет.

Рис. 3.10. Внутренние силовые факторы в элементе 34

- 16. Формирование и просмотр таблиц результатов расчета РСУ. Результаты ►Таблицы результатов (кнопка на панели инструментов);
- В боковой панели **Формирование таблиц** выделите название таблицы **РСУ в пластинах** (указав для выделенных элементов) (рис. 3.11) и нажмите на кнопку **Сформировать**.
- Выпишите и занесите в отчет наибольшие значения Мх и Qх. Укажите, для каких загружений они вычислялись.

Усилия в п	ластинча	атых э	▼ X PCY						
Номер	Ст.	Гр.	Крит.	Mx ((κH*м)/м)	Му ((кН*м)/м)	Мху ((кН*м)/м)	Qx (кH/м)	Qy (ĸH/m)	№№ Загружений
34	2	A	5/1	74.451	5.1278	-0.126	12.457	-0.54577	1; 2; 3
34	1	Α	185/1	50.599	4.093	-0.087387	12.58	-0.41724	1;2

Рис. 3.11. Внутренние силовые факторы в элементе 34

- 17. Произвести аналитический расчет Mx, Qx и наибольшего перемещения по оси Z для всех случаев нагружения.
- Так как изгиб цилиндрический, плиту можно заменить балкой единичной ширины, лежащей на двух опорах, имеющей цилиндрическую жесткость $D=\frac{Eh^3}{12(1-\mu^2)}=\frac{3\cdot 10^7\cdot 0.15^3}{12(1-0.2^2)}=8788$ кНм. Нагрузки в аналитическом расчете надо также задавать погонные (т.е. на еденицу длины): интенсивность погонной распределенной нагрузки от собственного веса $q=\gamma\cdot h=3.68\,\mathrm{kH/m^2}$; погонная сила $p=\frac{6\cdot 10}{3}=20$ кН/м; погонный момент $m=\frac{6\cdot 10}{3}=20$ кН. Эпюры изгибающих моментов приведены на рис. 3.12.

Рис. 3.12. Эпюры изгибающих моментов и поперечных сил: а — загружение 1; б — загружение 2; в — загружение 3

- Выписать наибольшие значения погонного изгибающего момента Mx, погонной поперечной силы Qx и наибольшего перемещения по оси Z для всех случаев нагружения, полученные аналитически.
 - 18. Расчёт армирования плиты.

Проведем расчёт армирования железобетонной плиты.

- Перейти в режим результатов расчета можно с помощью меню Расчет ►
 Исходные расчета (кнопка
- 19. Задание параметров конструирования. **Редакторы** ► **Редактор параметров** конструирования (кнопка на панели инструментов).
 - Выберите из категории Железобетонные элементы ▶ ж.б. пластина.
 - Все параметры оставляем по умолчанию.

Рис. 3.13. Задание параметров конструирования

- Для выхода из **Редактора материалов** щелкните мышкой по вкладке **Главный** вид.
- 20. Назначение параметров конструирования элементам расчетной схемы. Конструирование ► Назначить сечение, материал и параметры конструирования (кнопка на панели инструментов) (рис. 3.14).
- Выделение всех элементов плиты. **Выбор ▶ Выбрать все узлы и элементы** (Ctrl + A).
- На панели активного режима **Назначить жесткости** в **Параметрах назначения** укажите радиокнопкой **Использовать конструирование**.
- Затем в Доступном конструировании выберите 1. ж.б. пластина СП 63-13330-2012 (СНиП 52-01—2003).
 - Нажмите кнопку Назначить.

Рис. 3.14. Назначение конструирования

- 21. Запуск на расчет.
- Перейти в режим результатов расчета с помощью меню Расчет ▶ Результаты
 расчета (кнопка на панели инструментов).
- Выбираем **Расчет ▶ Расчет конструкций** (кнопка **№** на панели инструментов) (рис. 3.15).
 - Выбираем Силовые факторы Усилия.
 - Политика расчета Все элементы.
 - Нажимаем кнопку Отправить на расчет.

Рис. 3.15. Расчет конструкций

- 23. Выведите на экран изополе нижней арматуры по направлению X As1X (рис. 3.16). Для чего необходимо в раскрывающемся списке **Продольная арматура** поставить галочку напротив соответствующего пункта (рис. 3.16).

Рис. 3.16. Вывод результатов

Рис. 3.17. Мозаика нижней арматуры по направлению Х

24. Выведите на экран локальные результаты для нижней арматуры по направлению X — As1X (рис. 3.18). Для чего необходимо поставить галочку напротив **Локальные** результаты (рис. 3.16) и выбрать центральны элемент с максимальной интенсивностью окраски.

Рис. 3.18. Вывод локальных результатов

Рис. 3.19. Результаты армирования для локального элемента

- 25. Формирование и просмотр таблиц результатов расчета армирования.
 Результаты ► Таблицы результатов (кнопка | на панели инструментов).
- В боковой панели **Формирование таблиц** выделите название таблицы **Ж.Б. пластины, подбор** (убрав галочку **Для выделенных элементов**) (рис. 3.20) и нажмите на кнопку **Сформировать**.
- Полученная таблица **Ж.Б. пластины**, подбор отобразится в нижней части экрана (рис. 3.20).
- Выпишите значения подобранных площадей армирования для элемента 34 и занесите их в отчет.

Рис. 3.20. Формирование таблиц результат

- 25. Выполните численный расчет на статические нагрузки в программе SCAD++.
- 26. Выполните аналитический расчет на статические нагрузки.
- 27. Выполните сравнение результатов численных расчетов в ПК ЛИРА и SCAD++ и аналитического расчета.

3.3. Образец выполнения работы

3.3.1. Задание

Для железобетонной плиы (рис. 3.21) размером 8×4 м и толщиной 20 см требуется:

- 1) выполнить расчет плиты на статические нагрузки для трех случаев загружения (рис. 3.2);
- 2) вывести на экран деформированные схемы и изополя перемещений по направлению Z;
- 3) определить наибольшие значения прогибов пластины для всех случаев нагружения;
- 4) вывести на экран изополя погонных изгибающих моментов M_x и поперечных сил Q_x ;
- 5) определить наибольшие значения погонных изгибающих моментов M_x и поперечных сил Q_x ;
 - 6) произвести расчет нижнего армирования по направлению X;
 - 7) вывести на экран результаты расчета армирования;
 - 8) составить таблицу расчетных сочетаний усилий (РСУ) и произвести расчет РСУ;
- 9) для среднего элемента плиты просмотреть результаты РСУ и определить, при каких сочтаниях усилий получены наибольшие значения M_x и Q_x ;
 - 10) произвести аналитическую проверку полученных результатов.

Рис. 3.21 Железобетонная плита

Короткие стороны плиты оперты по всей длине. Длинные стороны плиты – свободны.

Заданные нагрузки:

- загружение 1 собственный вес;
- загружение 2 сосредоточенные силы P=6 кН и $P_1=12$ кН приложенные к срединным узлам плиты, параллельным короткой стороне, нагрузки P_1 приложена к крайним узлам;
- загружение 3 сосредоточенные моменты M=4 кНм и $M_1=8$ кНм, приложенные к коротким сторонам плиты, сосредоточенный момент M_1 приложен к крайним узлам.

Шаг сети КЭ — 0,5 м. Расчет производится для сетки 16×8 . Материал плиты — бетон В35. Модуль упругости $E=3,45\cdot 10^7~{\rm kH/m^2};$ коэффициент Пуассона $\mu=V=0.2;$ удельный вес материала плиты $\gamma=R_0=24,5~{\rm kH/m^3}.$

3.3.2. Численный расчет в программе ПК ЛИРА

а – собственный вес

б – сосредоточенные силы

в – сосредоточенные моменты

Рис. 3.22 Схемы деформирования для трех случаев нагружения

а – собственный вес

 δ – сосредоточенные силы

в – сосредоточенные моменты

Рис. 3.23 Изополя перемещений по направлению Z для всех случаев нагружения Наибольшие значения прогиба: при загружении собственным весом — -11,563 мм; сосредоточенными силами — -7,9576 мм; сосредоточенными моментами — -3,9414 мм.

Рис. 3.24 Изополя изгибающих моментов и поперечных сил: $a- {\rm загружениe}\ 1; \ 6- {\rm загружениe}\ 2; \ B- {\rm загружениe}\ 3$

Усилия в пластинчатых элементах

Номер	Мх ((кН*м)/м)	Му ((кН*м)/м)	Мху ((кН*м)/м)	Qx (κΗ/м)	Qу (кН/м)	Плотность энергии (КПа)	Загружение
61	38.674	2.7298	-0.03914	1.0588	-0.16526	0.15879	1
61	29.829	0.75673	-0.078589	6.1955	0.18641	0.095799	2
61	10.988	0.067119	-0.0012288	-0.0017822	-0.0011745	0.013092	3

Рис. 3.25 Внутренние силовые факторы в элементе 61

Значения M_x и Q_x : при загружении собственным весом — $M_x=38,674~\mathrm{kHm/m};$ $Q_x=1,0588~\mathrm{kH/m};$ сосредоточенными силами — $M_x=29,829~\mathrm{kHm/m};$ $Q_x=6,1955~\mathrm{kH/m};$ сосредоточенными моментами — $M_x=10,988~\mathrm{kHm/m};$ $Q_x=-0,0017822~\mathrm{kH/m}.$

РСУ в пластинах

Номер	Ст.	Гр.	Крит.	Мх ((кН*м)/м)	Му ((кН*м)/м)	Мху ((кН*м)/м)	Qх (кН/м)	Qу (кН/м)	Плотность энергии (КПа)	№№ Загружений
61	2	Α	5/1	91.522	3.9914	-0.13884	8.5972	0.040501	0.89631	1; 2; 3
61	1	Α	185/1	78.336	3.9109	-0.13736	8.5993	0.04191	0.65536	1; 2
61	1	Α	436	55.727	3.0834	-0.044529	1.1626	-0.18319	0.33111	1; 3

Рис. 3.26 Внутренние силовые факторы в элементе 61

Наибольшие значения M_x и Q_x : $M_x=91,\!522$ кНм/м — для загружений 1, 2, 3; $Q_x=8,\!5993$ кН/м — для загружений 1, 2.

Рис. 3.27 Мозаика нижней арматуры по направлению ${\bf X}$

Рис. 3.28 Результаты армирования для локального элемента

Ж.Б. пластины, подбор

Mist hadermish hedeep								
Номер	As1X (cm^2/m)	As2X (cm^2/m)	As3Y (cm^2/m)	As4Y (cm^2/m)	% вдоль Х	% вдоль Ү		
61	6.7	2	2	2	0.432906	0.2		
62	6.7	2	2	2	0.433689	0.2		
63	6.7	2	2	2	0.435326	0.2		
64	6.8	2	2	2	0.44124	0.2		
65	6.8	2	2	2	0.44124	0.2		
66	6.7	2	2	2	0.435326	0.2		
67	6.7	2	2	2	0.433689	0.2		
68	6.7	2	2	2	0.432906	0.2		
69	6.7	2	2	2	0.432906	0.2		
70	6.7	2	2	2	0.433689	0.2		
71	6.7	2	2	2	0.435326	0.2		

Рис. 3.29 Подбор армирования для железобетонных пластин

Подобранные площади армирования для элемента 61: $A_{s1x}=6.7~{\rm cm}^2/{\rm m};$ $A_{s2x}=2~{\rm cm}^2/{\rm m};$ $A_{s3y}=2~{\rm cm}^2/{\rm m};$ $A_{s4y}=2~{\rm cm}^2/{\rm m}.$

3.3.3. Численный расчет в программе SCAD++

Ниже представлена краткая блок-схема численного расчета в ПК SCAD++. Для оформления отчета достаточно вывести те же данные, что и для численного расчета в ПК ЛИРА.

Рис. 3.30 Задание параметров плиты

Рис. 3.31 Назначение жесткости

Рис. 3.32 Схемы нагружения плиты: а – собственный вес; б – сосредоточенные силы; в – сосредоточенные моменты

а – собственный вес

 δ – сосредоточенные силы

в – сосредоточенные моменты

Рис. 3.33 Изополя перемещений по направлению Z для всех случаев нагружения

Наибольшие значения прогиба: при загружении собственным весом - -11,58 мм; сосредоточенными силами - -7,96 мм; сосредоточенными моментами - -3,94 мм.

Рис. 3.34 Изополя изгибающих моментов и поперечных сил:

В

а – загружение 1; б – загружение 2; в – загружение 3

Рис. 3.35 Формирование таблиц результатов

Величины усилий

Единицы измерения: кН, м

Параметры выборки:

Список узлов/элементов: 61

Список сечений: 1, 2, 3

Список загружений/комбинаций: 1, 2, 3

Список факторов: MX, QX

Величины усилий						
Элемент	Сечение	Загружение	Значение			
			MX	QX		
61	1	1	38,712	1,159		
61	1	2	29,844	6,413		
61	1	3	10,987	0,003		

Рис. 3.36 Внутренние силовые факторы в элементе 61

Значения M_x и Q_x : при загружении собственным весом — $M_x=38,712~\mathrm{кHm/m};$ $Q_x=1,159~\mathrm{kH/m};$ сосредоточенными силами — $M_x=29,844~\mathrm{kHm/m};$ $Q_x=6,413~\mathrm{kH/m};$ сосредоточенными моментами — $M_x=10,987~\mathrm{kHm/m};$ $Q_x=0,003~\mathrm{kH/m}.$

Величины усилий от комбинаций

Единицы измерения: кН, м

Параметры выборки:

Список узлов/элементов: 61

Список сечений: Все

Список загружений/комбинаций: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16

Список факторов: MX, QX

Величины усилий от комбинаций						
Элемент	Сечение	Комбинация	Значение			
			MX	QX		
61	1	1	91,582	8,975		
61	1	2	83,012	8,972		
61	1	3	79,544	7,575		
61	1	4	72,402	7,574		
61	1	5	42,584	1,275		
61	1	6	42,584	1,275		
61	1	7	38,712	1,159		
61	1	8	38,712	1,159		
61	1	9	55,768	1,278		
61	1	10	47,198	1,276		
61	1	11	49,7	1,162		
61	1	12	42,558	1,16		
61	1	13	78,397	8,971		
61	1	14	78,397	8,971		
61	1	15	68,557	7,573		
61	1	16	68,557	7,573		

Рис. 3.37 Внутренние силовые факторы в элементе 61

Наибольшие значения M_x и Q_x : $M_x=91,\!582$ кНм/м — для загружений 1, 2, 3; $Q_x=8,\!975$ кН/м — для загружений 1, 2, 3.

Рис. 3.38 Назначение конструирования

Рис. 3.39 Расчет конструкций

Рис. 3.40 Вывод результатов

Рис. 3.41 Мозаика нижней арматуры по направлению Х

Рис. 3.42 Результаты армирования для локального элемента

Рис. 3.43 Формирование таблиц результатов

№ элемента	Тип		Продольная арматура интенсивность в см²/м диаметры (∅) в мм шаг (Ѕ) в мм							
			По Х			По Ү				
		S ₁	S ₂	%	S₃	S ₄	%			
61	Σ	7,13	1,82	0,526	1,82	1,82	0,214			
62	Σ	7,16	1,82	0,528	1,82	1,82	0,214			
63	Σ	7,21	1,82	0,531	1,82	1,82	0,214			
64	Σ	7,3	1,82	0,536	1,82	1,82	0,214			
65	Σ	7,3	1,82	0,536	1,82	1,82	0,214			
66	Σ	7,21	1,82	0,531	1,82	1,82	0,214			
67	Σ	7,16	1,82	0,528	1,82	1,82	0,214			
68	Σ	7,13	1,82	0,526	1,82	1,82	0,214			
69	Σ	7,13	1,82	0,526	1,82	1,82	0,214			
70	Σ	7,16	1,82	0,528	1,82	1,82	0,214			
71	Σ	7,21	1,82	0,531	1,82	1,82	0,214			

Рис. 3.44 Подбор армирования для железобетонных пластин

Подобранные площади армирования для элемента 61: $A_{s1x}=7$,13 см $^2/$ м; $A_{s2x}=1$,82 см $^2/$ м; $A_{s3y}=1$,82 см $^2/$ м; $A_{s4y}=1$,82 см $^2/$ м.

3.3.4. Аналитический расчет

Так как изгиб цилиндрический, плиту можно заменить балкой единичной ширины, лежащей на двух опорах, имеющей цилиндрическую жесткость:

$$D = \frac{Eh^3}{12 \cdot (1 - \mu^2)} = \frac{3,45 \cdot 10^7 \cdot 0,2^3}{12 \cdot (1 - 0,2^2)} = 23958 \text{ кНм}.$$

Нагрузки в аналитическом расчете также задаются погонные (т.е. на единицу длины): интенсивность погонной распределенной нагрузки от собственного веса $q=\gamma\cdot h=4,9\,$ кН/м²; погонная сила $p=11\cdot 6/4=16,5\,$ кН/м; погонный момент $m=11\cdot 4/4=11\,$ кН. Эпюры поперечных сил и изгибающих моментов приведены на рис. 3.45.

Рис. 3.45 Эпюры изгибающих моментов и поперечных сил:

а – загружение 1; б – загружение 2; в – загружение 3

Максимальные прогибы для всех случаев загружений:

a)
$$f_{max} = -\frac{5 \cdot q \cdot L^4}{384 \cdot D} = -\frac{5 \cdot 4,9 \cdot 8^4}{384 \cdot 23958} = -10,91 \text{ mm};$$

б)
$$f_{max} = -\frac{P \cdot L^3}{48 \cdot D} = -\frac{16.5 \cdot 8^3}{48 \cdot 23958} = -7.35$$
 мм;

B)
$$f_{max} = -\frac{m \cdot L^2}{8 \cdot D} = -\frac{11 \cdot 8^2}{8 \cdot 23958} = -3,67 \text{ MM}.$$

Наибольшие значения перемещения по оси Z: для загружения 1-Z=-10,91 мм; для загружения 2-Z=-7,35 мм; для загружения 3-Z=-3,67 мм.

Наибольшие значения погонного изгибающего момента M_x : для загружения 1 — $M_x = 39.2 \, \mathrm{кHm/m}$; для загружения 2 — $M_x = 33 \, \mathrm{kHm/m}$; для загружения 3 — $M_x = 11 \, \mathrm{kHm/m}$.

Наибольшие значения погонной поперечной силы Q_x : для загружения $1-Q_x=0$; для загружения $2-Q_x=8$, 25 кH/м; для загружения $3-Q_x=0$.

Расчет арматуры ведется на 1 п.м. длины. Задаемся необходимыми параметрами.

Площадь арматуры при $h_0=h-a=200-30=170$ мм. Расчетное сопротивление арматуры А400 $R_{\scriptscriptstyle S}=350$ МПа, бетона В35 – $R_{\scriptscriptstyle D}=19$,5 МПа.

Коэффициент α_m :

$$\alpha_m = \frac{M}{R_b \cdot b \cdot h_0^2} = \frac{39200000}{19.5 \cdot 1000 \cdot 170^2} = 0.0696.$$

Требуемая площадь арматуры определяется по следующей формуле:

$$A_s = R_b \cdot b \cdot h_0 \cdot (1 - \sqrt{1 - 2 \cdot \alpha_m}) / R_s =$$

$$= 19.5 \cdot 1000 \cdot 170 \cdot (1 - \sqrt{1 - 2 \cdot 0.0696}) / 350 = 6.84 \text{ cm}^2 / \text{m}.$$

Минимальный процент армирования для изгибаемых элементов составляет $\mu=0,1\%$, в соответствии с которым минимальная площадь армирования составляет:

$$A_s = \frac{\mu \cdot b \cdot h_0}{100\%} = \frac{0.1 \cdot 1000 \cdot 170}{100\%} = 1.7 \text{ cm}^2/\text{m}.$$

3.3.5. Сравнение результатов

	№ загружения		Расчет в ПК	Расчет в	Аналитический	
			Лира	SCAS++	расчет	
Попомонизмия по 7	1		-11,563	-11,58	-10,91	
Перемещения по Z ,	2		-7,9576	-7,96	-7,35	
MM	3		-3,9414	-3,94	-3,67	
Погонные		1	38,674	38,712	39,2	
изгибающие моменты		2	29,829	29,844	33	
M_x , кНм/м	3		10,988	10,987	11	
Погонные	1		1,0588	1,159	0	
поперечные силы Q_x ,	2		6,1955	6,413	8,25	
кН/м	3		-0,0017822	0,003	0	
	M_x , к H м/м		91,522	91,582	91,52 (1;2;3)	
Наибольшие значения	(загружения)		(1;2;3)	(1;2;3)	91,32 (1,2,3)	
усилий при РСУ	Q_x , кН/м (загружения)		8,5993 (1;2)	8,975	9,08 (2)	
				(1;2;3)		
	ПО	нижнее	6,7	7,13	6,84	
Площади	X	верхнее	2	1,82	1,7	
армирования, см ² /м	ПО	нижнее	2	1,82	1,7	
	Y	верхнее	2	1,82	1,7	

По итогам проведенных расчетов проведено сравнение результатов путем вычисления погрешностей в расчетах:

	№		Численные	Аналитический расчет	
	загружения		расчеты	ПК Лира	SCAS++
Попомочномия	1		0,17%	5,99%	6,14%
Перемещения по Z , мм	2		0,03%	8,27%	8,30%
IIO Z, MM	3		0,04%	7,40%	7,36%
Поломум моруболомум	1		0,10%	1,34%	1,24%
Погонные изгибающие моменты M_x , кНм/м	2		0,05%	9,61%	9,56%
MOMENTAL M_{χ} , RTM/M	3		0,01%	0,11%	0,12%
Пополица поповолица	1		9,46%	100,00%	100,00%
Погонные поперечные силы Q_x , кН/м	2		3,51%	24,90%	22,27%
Силы Q_x , ки/м	3		68,33%	100,00%	100,00%
Наибольшие значения	М _x , кНм/м		0,07%	0,00%	0,07%
усилий при РСУ	Q_x , к H /м		4,37%	5,29%	1,16%
	по Х	нижнее	6,42%	2,05%	4,24%
Площади армирования,		верхнее	9,00%	17,65%	7,06%
cm ² /m	по У	нижнее	9,00%	17,65%	7,06%
	HO I	верхнее	9,00%	17,65%	7,06%

По итогам сравнения численных расчетов: перемещения по Z и погонные изгибающие моменты M_x совпадают по значениям; различия погонных поперечных сил Q_x и наибольших значений усилий при РСУ в сравнении с их величинами незначительны.

По итогам сравнения аналитического расчета с численными: различия перемещений по Z, погонных изгибающих моментов M_x и наибольших значений усилий при РСУ в сравнении с их величинами незначительны, погонные поперечные силы Q_x для загружений 1 и 3 подразумеваются нулевые и не имеют большой разницы, для загружения 2 отличаются на 25% ввиду приближенного аналитического расчета при сборе погонных нагрузок.

Разница площадей армирования объясняется различием в протоколе расчетов программ: ПК Лира производит расчет минимального процента армирования по общей высоте сечения бетона, SCAD++ — по рабочей высоте сечения; аналитический расчет проводился также по рабочей высоте сечения. Также различия в результатах можно объяснить использованием коэффициента запаса в SCADe и учетом распределения нагрузок на все сетки армирования в Лире.

Список литературы

- 1. Введение в программный комплекс ЛИРА 10.4 [Электронный ресурс] : учебное пособие / О.А. Ковальчук, А.В. Колесников, Е.М. Русанова [и др.] ; М-во образования и науки Рос. Федерации, Нац. исследоват. Моск. гос. строит. Ун-т. Электрон. дан. и прогр. (10 Мб). Москва : НИУ МГСУ, 2015. 185 с.
- 2. Габрусенко В.В. Основы расчёта железобетона в вопросах и ответах: учеб. пособие/ В.В. Габрусенко М.: изд-во АСВ, 2002. 104 с.
- 3. Галлагер Р. Метод конечных элементов. Основы / Р. Галларер. М. : Мир, 1984. 428 с.
- 4. Капустин С. А. Метод конечных элементов в задачах механики деформируемых тел: учеб. пособие / С. А. Капустин; Нижегор. гос. ун-т. Н. Новгород: ННГУ, 2002. 180 с.
- 5. Карпенко Н.И. Общие модели механики железобетона, Москва: Стройиздат, 1996 417 с.
- 6. Карпиловский В. С., Криксунов Э. З., Маляренко А. А., Микитавренко М. А., Перельмутер А. В., Перельмутер М. А., SCAD Office. Вычислительный комплекс SCAD, Москва: СКАД СОФТ, 2015. –781с.
- 7. Лампси Б.Б. Строительная механика Часть І. Статически определимые системы: учеб.-метод.пос./ Б.Б.Лампси, Н.Ю.Трянина, С.Г.Юдников, А.А.Юлина, Б.Б.Лампси, П.А.Хазов; Нижегор. гос. архитектур. строит. ун-т Н.Новгород: ННГАСУ, 2016. –81.
- 8. Маркина Ю.Д. Использование препроцессора «Форум» для формирования расчетной схемы многоэтажного здания: учеб. пособие/ Ю.Д. Маркина, П.А. Хазов, Б.Б. Лампси; Нижегор. гос. архитектур. строит. ун-т Н.Новгород: ННГАСУ, 2020.-60с.
- 9. Маркина Ю.Д. Расчет и армирование монолитной железобетонной плиты перекрытия в программном комплексе SCAD Office: учеб. пособие/ Ю.Д. Маркина, Б.Б. Лампси, П.А. Хазов; Нижегор. гос. архитектур. строит. ун-т Н.Новгород: ННГАСУ , 2020.-75с.
- 10. Норри Д. Введение в метод конечных элементов : пер. с англ. / Д. Норри, Ж. де Фриз. М. : Мир, 1981.-304 с.
- 11. Пособие по проектированию бетонных и железобетонных конструкций из тяжелого бетона без предварительного напряжения арматуры (к СП 52-101-03), Москва: ЦНИИПромзданий, 2005-304 с.
- 12. Сегерлинд Л. Применение метода конечных элементов : пер. с англ. / Л. Сегерлинд. М. : Мир, 1979. 392 с.

- 13. Сигалов В.Н., Байков В.Н. Железобетонные конструкции. Общий курс, Москва: Стройиздат, 1991, 767 с.
- 14. Сборник задач по сопротивлению материалов/ Н.М. Беляев, под ред. И.К. Снитко. –М.: Главная редакция физико-иатематической литературы, 1968. 352 с.
- 15. Сборник задач по сопротивлению материалов/ под ред. В.К. Качурина. М.: Главная редакция физико-иатематической литературы изд-ва «Наука», 1970. 432 с.
- 16. Старцева Л.В., Архипов В.Г., Семенов А.А. Строительная механика в примерах и задачах. Учебное издание. М.: изд-во АСВ, 2013. 224 с.
- 17. Стренг Г. Теория метода конечных элементов : пер. с англ. / Г. Стренг, Дж. Фикс. М. : Мир, 1977. 349 с.
- 18. Строительная механика. Компьютерные технологии и моделирование: учебник/ В.А. Баженов, А.В. Перельмутер, О.В. Шишов/ под общ. Ред. В.А. Боженова. М.: Изд-во СКАД СОФТ, изд. дом АСВ, 2014. 911 с.

Маркина Юлия Дмитриевна Хазов Павел Алексеевич

РЕШЕНИЕ ЗАДАЧ СТРОИТЕЛЬНОЙ МЕХАНИКИ С ПРИМЕНЕНИЕМ САПР

Учебное пособие

Подписано в печать формат $60x90\ 1/8$. Бумага газетная. Печать трафаретная. Уч. изд. л. 11,7. Усл. печ. л. 12. Тираж 300 экз. Заказ №

Федеральное государственное образовательное учреждение высшего образования «Нижегородский государственный архитектурно-строительный университет» 603000, Нижний Новгород, ул. Ильинская, 65. Полиграфический центр ННГАСУ, 603000, Нижний Новгород, ул. Ильинская, 65 http://www.nngasu.ru, rector@nngasu.ru