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ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ 
 

В настоящей монографии применяют следующие термины с 

соответствующими определениями. 

Точечное 

исчисление 

математический аппарат для исчисления 

геометрических форм, явлений и процессов, которые 

отображаются множеством точек и чисел 

Параметры точки система чисел, которые определяют точку в симплексе 

пространства 

Симплекс 

пространства 

совокупность независимых точек, определяющих 

пространство 

Независимые 

точки 

точки, для которых определитель, составленный из их 

параметров (координат), не равен нулю 

Декартовый 

симплекс 

совокупность точек 1... iOE E , образующих 

прямоугольную систему координат с ортами 

Геометрическая 

схема 

графический алгоритм построения геометрических 

объектов 

Точечное 

уравнение 

математическое выражение, определяющее текущую 

точку с помощью линейного соотношения точек и 

функций от одного или нескольких параметров 

Точка в точечном 

уравнении 

координатный вектор 

Текущая точка точка, которая своим движением заполняет 

пространство, формируя геометрический объект 

Текущий 

параметр 

переменный параметр, который задаёт движение 

текущей точки 

Покоординатный 

расчёт 

математическая операция замены точек в точечном 

уравнении на соответствующие им координаты 
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ВВЕДЕНИЕ 
 

В настоящее время во все без исключения сферы человеческой 

деятельности широкого внедряются информационные и компьютерные 

технологии, работа которых зачастую происходит в режиме реального времени, 

что предъявляет особые требования к созданию высококачественных 

программных продуктов. Компьютерная графика, не является исключением, а 

наоборот во многом задаёт тон среди всех инженерных программных продуктов 

и комплексов моделирования объектов, процессов и явлений живой и не живой 

природы, техники, технологии, экономики, строительства и архитектуры. Это 

обусловлено тем, что основой всех существующих систем автоматизированного 

проектирования, а во многих случаях компьютерного и информационного 

моделирования, является геометрическая модель, от математического описания 

которой зависит эффективность всего программного пакета в целом. Задача в 

значительной степени усложняется при моделировании и исследовании 

многофакторных процессов, для которых геометрическая модель представляется 

многомерным геометрическим объектом. Поэтому разработка и развитие нового 

математического аппарата геометрического моделирования, способного 

эффективно обрабатывать и представлять геометрическую информацию с 

возможностью обобщения на многомерное пространство является актуальной 

научной задачей. 

Математический аппарат «Точечное исчисление» [1, 4, 3] был разработан 

для решения инженерных задач геометрического и компьютерного 

моделирования, которые возникали, в первую очередь, в строительстве и 

архитектуре, и были направлены на моделирование оболочек пространственных 

конструкций закономерной и незакономерной формы, обладающих наперёд 

заданными свойствами [14, 12, 5]. Тем не менее, вместе с его развитием, точечное 

исчисление показало свою эффективность при решении целого ряда инженерных 

и научных задач связанных с моделированием многофакторных процессов и 

явлений [29, 20, 9, 21], незакономерных топографических поверхностей [32] и 



9 

поверхностей конструктивных элементов летательных аппаратов [16], 

поверхностей рабочих органов машин и механизмов [6] и поверхностей 

тонкостенных оболочек инженерных сооружений с учётом несовершенств 

геометрической формы [26], обработки гиперколичественного множества точек 

при моделировании микрорельефа местности [27] и расшифровки спутниковых 

данных SRTM [23]. Развитие точечного исчисления послужило основой для 

создания геометрической теории многомерной интерполяции и аппроксимации 

[15]; позволило обобщить метод наименьших квадратов [13] и кинематический 

метод моделирования поверхностей [12, 15, 8] на многомерное пространство 

используя их геометрическую интерпретацию и эффективно использовать 

линейную, параболическую, эллиптическую, гиперболическую и другие виды 

интерполяции в многомерном пространстве. Всё это стало возможным благодаря 

возможности точечного исчисления определять как непрерывные, так и 

дискретные, геометрические объекты вне зависимости от размерности 

пространства, в котором они находятся. 

Вместе с тем, вне зависимости от сложности геометрического объекта и 

размерности пространства, в котором он определяется, кривая линия остаётся 

основным формообразующим элементом, который позволяет создавать другие 

кривые, поверхности и твердотельные модели в виде выделенной части 

пространства [7, 22]. Поэтому важной задачей является создание библиотеки 

кривых линий в различных параметризациях. Все приведенные в монографии 

кривые обладают различными геометрическими свойствами. В основном это 

инцидентность точкам, касание и их комбинации. Читатель может найти 

интересующие его геометрические свойства и использовать для решения своих 

задач просто выбрав необходимое уравнение. Но для эффективного 

использования в инженерной практике описанных в монографии уравнений 

важно понимать каким образом они были получены. С этой целью в монографии 

приведены теоретические сведения о математическом аппарате «Точечное 

исчисление», описаны методы и подходы параметризации кривых линий в 

точечном исчислении, приведены примеры моделирования кривых линий. 
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ГЛАВА 1. КРАТКИЕ СВЕДЕНИЯ О ТОЧЕЧНОМ ИСЧИСЛЕНИИ 
 

Математический аппарат «Точечное исчисление» был предложен 

профессором Балюбой И.Г. в процессе написания докторской диссертации под 

руководством профессора Найдыша В.М. [1]. Необходимость рассмотрения 

геометрических объектов вне зависимости от размерности пространства с 

использованием наглядности привело к созданию исчисления, основным 

элементом которого является точка. Само название «Точечное исчисление» 

возникло исходя из выбора основного формообразующего элемента – точки. При 

этом все геометрические объекты представляются как определенным образом 

организованные множества точек. Подобная идея была предложена ранее 

Х. Штаудтом в проективной геометрии и получила название – вурф-исчисление. 

Таким образом, точечное исчисление в аффинном пространстве можно считать 

частным случаем вурф-исчисления в проективном пространстве. Отличительной 

особенностью точечного исчисления являются специальные точечные 

уравнения геометрических объектов, которые представляются совокупностью 

математических операций над точками и функциями от параметров. Также 

точечное исчисление можно рассматривать как результат синтеза векторного, 

барицентрического и тензорного исчислений, из которых оно на стадии 

формирования заимствовало идеи и методы определения геометрических 

объектов, способы их аналитического описания, а также частично их 

аксиоматическую основу. Тем не менее в точечном исчислении получены и 

доказаны ряд теорем и утверждений, отличительной особенностью которых 

является возможность обобщения на многомерное пространство. 

 

1.1. Основополагающие определения и термины 
Фундаментальным объектом точечного исчисления служит 

геометрическая точка, которая аналитически описывается координатным 

вектором, содержащим переменные или фиксированные значения своих 

координат. Данный подход непосредственно приводит к векторно-
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параметрическому способу описания кривых, поверхностей и других объектов, 

что устанавливает глубокую связь точечного исчисления с классическим 

векторным исчислением. Можно утверждать, что точечное исчисление 

сформировалось как специализированная ветвь векторного исчисления, 

ориентированная на решение теоретических и прикладных задач 

геометрического моделирования. В процессе его развития был разработан 

собственный математический аппарат: теоремы, уникальные методы и 

алгоритмы параметризации геометрических объектов. Это не только выделило 

точечное исчисление в отдельное научное направление исследований, но и 

расширило инструментарий векторного исчисления. В данной монографии 

принята терминология, устоявшаяся в рамках точечного исчисления, которая не 

противоречит, а полностью согласующаяся с базовыми принципами векторного. 

Точечное исчисление – это математический аппарат для исчисления 

геометрических форм, явлений и процессов, которые возможно отобразить 

множеством точек и чисел. Исчисление работает с точками в рамках аффинной 

геометрии, представляя результаты покоординатными формулами. Эта 

основополагающая возможность позволяет успешно использовать 

компьютерное моделирование при задании, исследовании и формировании 

необходимых свойств создаваемых геометрических форм, явлений и процессов. 

Исчисление производится с арифметическими точками, заданными своими 

параметрами (координатами). 

Параметры точки – это система чисел, которая определяет эту точку в 

некотором симплексе пространства. Параметры (числа) являются отношением 

родственных геометрических образов, один из которых принимается в качестве 

единицы (эталона) для измерения второго количеством таких единиц. 

Например, точка ( ), , ,A A A AA p q r s , где ,  ,  ,  A A A Ap q r s  – параметры (числа), 

выделяющие точку A  в трехмерном пространстве. 1A A A Ap q r s+ + + =  – условие 

принадлежности точки A  к трёхмерному пространству.  
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Симплекс пространства – это совокупность независимых точек, 

определяющих пространство. В общем случае симплекс является n −мерным 

обобщением тетраэдра. 

Например, симплекс трехмерного пространства – это совокупность 

четырех независимых точек ,  ,  ,  A B C D . 

Независимые точки – это точки, для которых определитель, 

составленный из их параметров (координат), не равен нулю. 

Например, точки , , ,A B C D  образуют симплекс, если выполняется 

следующее условие: 

1
1

0
1
1

A A A A A A A

B B B B B B B

C C C C C C C

D D D D D D D

p q r s p q r
p q r s p q r
p q r s p q r
p q r s p q r

= ≠ . 

Декартовый симплекс – совокупность точек 1... iOE E , образующих 

прямоугольную систему координат с ортами. Например, декартовый симплекс в 

трёхмерном пространстве – 1 2 3OE E E . 

Геометрическая схема – графический алгоритм построения 

геометрических моделей. Играет в точечном исчислении первостепенную роль. 

Для решения любой задачи непрерывного и дискретного геометрического 

моделирования объектов, процессов и явлений сначала необходимо разработать 

геометрическую схему. Чем более качественно проработана геометрическая 

схема, тем более оптимизированным получается вычислительный алгоритм 

компьютерной реализации геометрических моделей. 

Точечное уравнение – это математическое выражение, определяющее 

текущую точку ( , , , ,...)M p q r s  с помощью линейного соотношения вершин 

симплекса и функций ,  ,  ,  ,...p q r s , зависящих от одного или нескольких 

параметров. Например, точечное уравнение, которое описывает 

двухпараметрическое множество точек в трёхмерном пространстве (отсек 

поверхности), в общем случае выглядит так: 
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( ) ( ) ( ) ( ), , , , ,M Ap u v Bq u v Cr u v Ds u v= + + +  

где ( ) ( ) ( ) ( ), , , , 1p u v q u v r u v s u v+ + + =  – условие принадлежности отсека 

поверхности к трёхмерному пространству. 

Используя это условие, можно исключить одну из функций от текущих 

параметров. В таком случае получим равноценное точечное уравнение 

двухпараметрического множества точек в другом виде: 

( ) ( ) ( ) ( ) ( ) ( ), , , .M A D p u v B D q u v C D r u v D= − + − + − +  

В таком представлении точка D  играет роль начальной точки в симплексе 

DABC  (аналог начала системы координат). Следует отметить, что изначально 

все точки симплекса являются равноценными и можно любую из них выбрать в 

качестве начальной. 

Текущая точка – это точка, которая движется (течёт) по геометрическому 

объекту, формируя его. Другими словами, текущая точка своим движением 

заполняет пространство, создавая геометрический объект. Тогда текущая точка 

– это и есть геометрический объект. Поэтому любую непрерывную или 

дискретную геометрическую модель в точечном исчислении можно представить 

в виде организованного множества точек, которое определяется с помощью 

текущих параметров. 

Текущий параметр – это переменный параметр, который задаёт движение 

текущей точки. Для обеспечения покоординатного расчёта в точечном 

исчислении используются текущие параметры, которые в явном или скрытом 

виде являются инвариантами параллельного проецирования. Наиболее часто 

используется простое отношение трёх точек прямой. В этом случае текущий 

параметр будет изменяться от 0 до 1. Широкое распространение получили также 

угловые параметры. 

Покоординатный расчёт – математическая операция замены точек в 

точечном уравнении на соответствующие координаты. Покоординатный расчёт 

обеспечивает переход от точечных уравнений, которые по своей сути являются 

символьными, к системе параметрических уравнений. Геометрический смысл 
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покоординатного расчёта тесно связан с параллельным проецированием 

геометрических объектов на оси глобальной (или локальной) системы 

координат.  

 

1.2. Основные методы точечного исчисления 
В процессе своего становления и развития точечное исчисление вобрало в 

себя многие существующие методы проективной, аффинной, 

дифференциальной, начертательной и аналитической геометрии, векторного и 

барицентрического исчисления. Но основополагающими методами точечного 

исчисления является метод проецирования на оси глобальной системы 

координат и метод подвижного симплекса. 

 

1.2.1. Метод проецирования на оси глобальной системы координат 
Базовым методом точечного исчисления является метод проецирования 

геометрического объекта на оси глобальной системы координат, в отличие от 

начертательной геометрии, в основу которой положен метод проецирования 

пространственных геометрических объектов на плоскости проекций. Такой 

подход позволяет переходить от символьных точечных уравнений к системе 

однотипных параметрических уравнений. Геометрическая интерпретация такого 

перехода представляет собой параллельное проецирование пространственного 

геометрического объекта на оси глобальной системы координат. Аналитически 

этот процесс описывается систематической заменой точек на соответствующие 

их координаты. Эта операция получила название покоординатного расчёта. 

Вместе с тем покоординатный расчёт целесообразно выполнять тогда, когда 

получено итоговое точечное уравнение моделируемого геометрического 

объекта, что значительно сокращает время необходимых вычислений. 

Геометрическое моделирование в точечном исчислении осуществляется на 

основе геометрической схемы – графического алгоритма построения 

геометрического объекта с последующим описанием в виде точечных уравнений 

и вычислительных алгоритмов на их основе. При этом каждой графической 
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операции ставится в соответствие аналитическая операция. Это привело к 

разработке инструментов геометрического моделирования, инвариантных 

относительно параллельного проецирования, которые способны обеспечить 

покоординатный расчёт точечных уравнений [19]. Например, определение 

отрезка прямой в 3-мерном пространстве благодаря инвариантным свойствам 

параметра точечного исчисления, которым является простое отношение трёх 

точек прямой (рис. 1.1), выглядит следующим образом: 

( )
( )
( )
( )

.
B A A

B A A

B A A

x x x t x

M B A t A y y y t y

z z z t z

= − +


= − + ⇔ = − +
 = − +

 

 
Рисунок 1.1. Геометрическая интерпретация покоординатного расчёта для 

отрезка прямой в 3-мерном пространстве 

Этот же подход справедлив и для многомерного пространства. Фактически 

размерность пространства определяет необходимое количество осей проекций и 

соответственно количество параметрических уравнений системы. Теоретически 

таких осей может быть бесконечное множество, как и однотипных 

параметрических уравнений, которые являются аналитическим представлением 

геометрической операции покоординатного расчёта. 

Также справедливым остаётся проецирование не только на оси проекций, 

но и на любую прямую, что позволяет работать с подпространствами 
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(локальными симплексами), а результат получать в глобальной системе 

координат (глобальном симплексе). Причём переход от локального симплекса к 

глобальному осуществляется автоматически путём замены точек на их точечные 

уравнения и не требует дополнительных вычислений. 

В общем виде точечное уравнение любого геометрического объекта можно 

представить в виде суммы произведений точек симплекса на функции от 

текущих параметров: 

 

1

1
1

1

,

...

i

i

i

n

M A i
i
n

n
M A i

ii i
i n

M A i
i

x x p

y y p
M A p

z z p

=

=
=

=

 =

 == ⇔ 

 =








 (1.1) 

где M  – текущая точка, которая своим движением заполняет пространство, 

формируя геометрический объект; 

iA  – точки, определяющие исходный симплекс многомерного 

пространства; 

ip  – функции от текущих параметров ( ), , ,...u v w , которые обеспечивают 

движение текущей точки M . 

n  – размерность пространства исходного симплекса. 

Условием принадлежности текущей точки исходному симплексу является 

суммарное значение функций от текущих параметров равное 1: 
1

1
n

i
i

p
=

= . 

Как видно из (1.1), все параметрические уравнения системы, полученные 

на основе точечного уравнения, являются полностью однотипными. Меняются 

только координаты точек симплекса, которые относятся к исходным или 

промежуточным данным. В этом случае все точки в уравнении (1.1) по сути 

являются координатными векторами. Из этих соображений точечное исчисление 

можно считать особым видом векторного исчисления, способным индуцировать 
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системы однотипных параметрических уравнений, обеспечивая в результате 

геометрического моделирования, так называемый, скрытый параллелизм. Тогда 

уравнение (1.1) будет представлено следующим образом: 

1
.

...

i

i

i

A

n
A

i
i A

x

y
M p

z=

 
 
 =  
 
 
 

  

Используя это свойство точечных уравнений, для определения 

геометрических объектов многомерного пространства будем выполнять 

параллельные вычисления для каждой отдельной оси проекций. Таким образом, 

получим распараллеливание вычислений по данным. И чем больше будет 

размерность пространства, в котором определяется геометрический объект, тем 

больше вычислительных потоков многоядерного процессора могут быть 

одновременно задействованы. Такому же распараллеливанию вычислений могут 

быть подвергнуты все вычислительные алгоритмы определения многомерных 

геометрических объектов, представленные в виде последовательности точечных 

уравнений [24]. В результате получим: 

1

1
1

1
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        2-й вычислительный поток
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...                           -й вычислительный пот
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Следует отметить, что при определении метрических характеристик 

геометрических объектов с помощью метрического оператора может 

понадобиться ряд промежуточных вычислений, предусматривающих особый 

вид покоординатного расчёта, который усложняет распараллеливание 

вычислений по данным. Эта особенность не является следствием использования 

точечного исчисления и относится ко всем современным САПР. Вместе с тем, 
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доля таких вычислений несравненно мала и такие вычисления легко поддаются 

распараллеливанию по задачам. 

 

1.2.2. Метод подвижного симплекса 
Другим основополагающим методом точечного исчисления является 

метод подвижного симплекса, который разработан для моделирования 

непрерывных геометрических объектов [14, 12]. Под термином «симплекс» в 

точечном исчислении понимают n-мерный тетраэдр (от лат. Simplex – простой) 

– геометрическая фигура, которая является n-мерным обобщением треугольника. 

В общем случае, симплекс – это выпуклая оболочка n+1 точек, которые не 

принадлежат ни одной гиперплоскости n-мерного эвклидова пространства. Эти 

точки называются вершинами симплекса. Для точечного исчисления в 

большинстве случаев вершины симплекса являются исходными данными. 

Другими словами, все точки и операции с ними связаны с помощью параметров 

с симплексом пространства. Поэтому при изменении симплекса автоматически 

происходит пересчёт всех точек, принимающих участие в формообразовании 

искомого геометрического объекта. Этот приём позволяет работать с 

множеством локальных симплексов, определяя в них геометрические объекты, и 

переопределять их множество раз вплоть до определения в глобальном 

симплексе. Для многих задач в точечном исчислении симплекс также является 

мерой пространства, в котором определяются геометрические объекты. Он 

задаёт положение, влияет на форму и метрические характеристики 

геометрического объекта. 

Как видно из определения, симплекс непосредственно связан с 

размерностью пространства, в котором рассматриваются геометрические 

объекты. Так симплекс двух точек образует одноразмерное пространство – 

линию. Симплекс трех точек образует двухмерное пространство – плоскость. 

Симплекс четырех точек образует трехмерное пространство – тетраэдр и т.д. 

Здесь следует выделить очень важное свойство симплекса. Если в 

точечном уравнении любого геометрического объекта поменять вершины 
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симплекса (произвести замену симплекса), то автоматически произойдёт 

аффинное преобразование этого геометрического объекта. При этом новый 

симплекс точек может быть, как фиксированным, так и подвижным. К примерам 

использования метода подвижного симплекса можно отнести конструирование 

любого геометрического объекта в непрерывной геометрии (дуги кривой, отсека 

поверхности, гиперповерхности и т.д.), при условии существования 

непрерывного геометрического алгоритма конструирования. Так, изменение 

координат вершин симплекса, через которые задана кривая, геометрически 

означает движение кривой в трехмерном пространстве, что позволяет 

сформировать отсек поверхности, посредством движения симплекса с заданной 

кривой, порождая тем самым новый геометрический объект – отсек поверхности. 

Такой подход легко обобщается на многомерное пространство и может служить 

для моделирования многопараметрических гиперповерхностей многомерного 

пространства. Из этих соображений метод подвижного симплекса можно 

рассматривать как результат обобщения кинематического метода 

моделирования поверхностей на многомерное пространство, реализованного в 

точечном исчислении. 

Рассмотрим пример использования метода подвижного симплекса для 

моделирования отсека поверхности на трёх направляющих линиях. Пусть задан 

симплекс трёхмерного пространства DABC  (рис. 1.2). В симплексе DABC  

заданы три направляющие линии – дуги кривых 'AAN A , BDN B  и 'CCN C . 

Локальный симплекс плоскости A B CN N N  движется по трём направляющим 

линиям. Зададим в подвижном симплексе A B CN N N  дугу кривой, которая 

определяет форму сечения является образующей линией такой поверхности. 

Направляющие линии подвижного симплекса определим с помощью 

функциональных зависимостей: 
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( ) ( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( )

0
,

1 0
0

,
1 0

0
,

1 0

A

B

C

u
N A A A

u
N B D D

f u f
N C C C

f f

φ φ
φ φ

ϕ ϕ
ϕ ϕ

−′= − +
−

−
= − +

−

−′= − +
−

 

где ( ) ( ) ( ),  ,  f f u u uφ φ ϕ ϕ= = =  – произвольные непрерывные функции от 

параметра u , которые определяют направляющие линии отсека поверхности. 

 
Рисунок 1.2. Геометрическая схема моделирования поверхности трёх 

направляющих методом подвижного симплекса 

В симплексе A B CN N N  зададим образующую отсека поверхности с 

помощью параметра v : 

( ) ( ) ( ) ( ) ,A C B C CM N N p v N N q v N= − + − +  

где ( ) ( ),  p v q v  – произвольные непрерывные функции от параметра v , 

определяющие вид сечений отсека поверхности плоскостью A B CN N N . 

В результате на основе геометрической схемы (рис. 1.2) получим 

вычислительный алгоритм построения отсека поверхности, включающий 

определение направляющих линий и образующей. Полученный алгоритм 

представлен в общем виде и подразумевает возможность использования 

различных непрерывных функций для определения искомого отсека 

поверхности. В частном случае полученный отсек поверхности может обладать 

заданными геометрическими свойствами. Например, если в качестве 

направляющих линий и образующей использовать дуги алгебраических кривых, 
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проходящих через наперёд заданные точки, полученные на основе кривых Безье 

[17], то получим двухпараметрический геометрический интерполянт [15], 

принадлежащий трёхмерному пространству. 

 

1.3. Основные теоремы точечного исчисления и их следствия 
Основными теоремами точечного исчисления являются О-теорема 

(теорема об отношениях), которая является обобщением теоремы Менелая, S-

теорема (теорема об отношениях площадей симплексов плоскости) и V-теорема 

(теорема об отношениях объемов симплексов 3-мерного пространства) [3]. 

 

1.3.1. Теорема о площадях треугольников и её следствия 

Пусть заданы три точки 1 2 3,  ,  A A A . На продолжении сторон треугольника 

1 2 3A A A  выберем три произвольные точки 1 2 3,  ,  B B B . Тогда справедливо 

соотношение: 

 1 2 3

1 2 3

,B B B

A A A

S
k

S
=  (1.2) 

где 
1 2 3B B BS  – площадь треугольника 1 2 3B B B ; 

1 2 3A A AS  – площадь треугольника 1 2 3A A A ; 

k  – коэффициент, определяемый через простые отношения трёх точек: 

( )( )( )
1 2 1 2 3 2 3 1 3

1 2 1 2 3 2 3 1 3

1 ,
1 1 1

A A B A A B A A Bk
A A B A A B A A B

+ ⋅ ⋅=
+ + +

 

где 1 2 1 2 3 2 3 1 3,  ,  A A B A A B A A B  – простые отношения трёх точек прямых 

1 2 2 3 3 1,  ,  A A A A A A  (рис. 1.3). 

Доказательство. Введём обозначения для простых отношений трёх точек 

1 1 2 2 2 3 3 3 1,  ,  B A A a B A A b B A A c= = = . 
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Рисунок 1.3. Геометрическая схема определения простых отношений трёх точек 

Исходя из инвариантных свойств простого отношения трёх точек 

относительно параллельного проецирования [3], получим точечные уравнения 

прямых 1 2 2 3 3 1,  ,  A A A A A A : 

( )

( )

( )

1 2 1 2
1 1 2 1 2 1 2

2 1 2 1

2 3 2 3
2 2 3 2 3 2 3

3 2 3 2

3 1 3 1
3 3 1 3 1 3 1

1 3 1 3

.

.

.

B A B AB A A a B A A a A
A A A A
B A B AB A A b B A A b A
A A A A
B A B AB A A c B A A c A
A A A A

−= = =  = − +
−
−= = =  = − +
−
−= = =  = − +
−

 

Выполнив покоординатный расчёт [3], для каждой из трёх точек iB  

получим систему однотипных параметрических уравнений: 

( )
( )
( )

( )
( )
( )

( )
( )
( )

1 2 1 2

1 2 1 2

2 3 2 3

2 3 2 3

3 1 3 1

3 1 3 1

1 2 1 2

2 3 2 3

3 1 3 1

.

.

.

B A A A

B A A A

B A A A

B A A A

B A A A

B A A A

x x x a x
B A A a A

y y y a y

x x x b x
B A A b A

y y y b y

x x x c x
B A A c A

y y y c y

 = − += − + 
= − +

 = − += − +  
= − +

 = − += − +  
= − +

 

Определим площадь треугольника с помощью определителя 3-го порядка 

[3]: 
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1 1

1 2 3 2 2

3 3

1
1 1 .
2

1

B B

B B B B B

B B

x y

S x y

x y

=  

Используя полученные ранее уравнения координат точек 1B , 2B  и 3B  

получим: 

( ) ( )
( ) ( )
( ) ( )

2 1 2 2 1 2

1 2 3 3 2 3 3 2 3

1 3 1 1 3 1

1

2 1 .

1

A A A A A A

B B B A A A A A A

A A A A A A

x x a x y y a y

S x x b x y y b y

x x c x y y c y

− + − +

= − + − +

− + − +

 

После преобразований выражение принимает следующий вид: 

( )
1 1

1 2 3 2 2

3 3

1
2 1 1.

1

A A

B B B A A

A A

x y

S a b c ab ac bc x y

x y

= + + + + + +  

Обратим внимание, что определитель в правой части выражения равен 

удвоенной площади треугольника 1 2 3A A A . Таким образом: 

1 2 3

1 2 3

1 .B B B

A A A

S
a b c ab ac bc

S
= + + + + + +  

Воспользуемся правилами преобразования простого отношения трёх точек 

прямой [3]: 

1 1 2 2 2 3 3 3 1
1 2 1 2 3 2 3 1 3

1 1 1;   ;   .
1 1 1

a B A A b B A A c B A A
A A B A A B A A B

= = − = = − = = −
+ + +

 

Выполнив соответствующие преобразования, получим: 

( )( )( )
1 2 1 2 3 2 3 1 3

1 2 1 2 3 2 3 1 3

11 .
1 1 1

A A B A A B A A Ba b c ab ac bc k
A A B A A B A A B

+ ⋅ ⋅+ + + + + + = =
+ + +

 

Следовательно, 

1 2 3

1 2 3

.B B B

A A A

S
k

S
=  

Что и требовалось доказать. 

Рассмотрим следствия из теоремы о площадях треугольников. 
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Следствие 1. Если треугольник 1 2 3B B B  вырождается в отрезок прямой 

(рис. 1.4), то справедливо следующее соотношение: 

 1 2 1 2 3 2 3 1 3 1.A A B A A B A A B⋅ ⋅ = −  (1.3) 

 
Рисунок 1.4. Графическая схема к следствию 1 

Доказательство. Площадь треугольника 
1 2 3

0B B BS =  (рис. 1.4). 

Следовательно, по теореме о площадях треугольников числитель выражения 

также равен нулю: 1 2 1 2 3 2 3 1 31 0A A B A A B A A B+ ⋅ ⋅ = . Откуда получим соотношение 

(1.3). 

Следствие 1 теоремы о площадях треугольников фактически соответствует 

теореме Менелая, только с учётом ориентации отрезков прямых, как показано в 

работе [1]. 

Следствие 2. При 3 3A B≡  (рис. 1.5) справедливо соотношение: 

1 2 3

1 2 3

1 1 2 2 2 3.
B B A

A A A

S
B A A B A A

S
= ⋅  

 
Рисунок 1.5. Графическая схема к следствию 2 

Доказательство. При 3 3A B≡  простое отношение трёх точек прямой 

принимает вид: 

3 1 3 1
3 3 1

1 3 1 3

1.A A A Ac A A A
A A A A

−= = = = −
−
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Откуда .k ab=  Следовательно, по теореме о площадях треугольников: 

1 2 3

1 2 3

1 1 2 2 2 3.
B B A

A A A

S
B A A B A A

S
= ⋅  

Следствие 3. При 1 1A B≡  и 3 3A B≡  (рис. 1.6) справедливо соотношение: 

1 2 3

1 2 3

2 2 3.
A B A

A A A

S
B A A

S
= −  

 
Рисунок 1.6. Графическая схема к следствию 3 

Доказательство. При 1 1A B≡  и 3 3A B≡  простое отношение трёх точек 

прямой 1a c= = − . Следовательно, по теореме о площадях треугольников: .k b= −  

Откуда следует справедливость следствия 3. 

Следствие 3 может быть также получено в результате использования 

известной теоремы о площадях треугольников с равными высотами, что 

подтверждает достоверность полученных результатов исследований. 

 

1.3.2. Теорема о простых отношениях и её доказательство 

О-теорема. Произведение простых отношений по замкнутому m -

угольнику, рассеченному прямой, равно 1 при четном m  и  –1 при нечетном m . 

Доказательство. Пусть задан m -угольник с вершинами 1 2 3... mA A A A  

(рис. 1.7). 

Продолжим стороны этого многоугольника до пересечения с некоторой 

прямой d . В плоскости многоугольника выбираем произвольную точку C . Тогда 

многоугольник разбивается на m  треугольников, одной из вершин которых 

является точка C , а две другие определяются смежными вершинами m -

угольника. Продолжим стороны этих треугольников также до пересечения с 
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прямой d . Каждый из таких треугольников тремя точками пересечения с прямой 

d  образует конфигурацию аналогичную следствию 1 теоремы о площадях 

треугольников (рис. 1.4). В результате, для треугольника 3 4A A C  (рис. 1.7) 

справедливым является соотношение, аналогичное (1.3): 

3 1 3 4 3 4 2 1.CA C A A B A CC⋅ ⋅ = −  

 
Рисунок 1.7. Геометрическая схема к доказательству О-теоремы 

Аналогичным образом составим соотношения для всех треугольников, на 

которые разбивает m -угольник точка C . Затем перемножим их между собой, 

чтобы получить соотношение для всего m -угольника. 

Обратим внимание, что для каждой вершины iA  стороны смежных 

треугольников рождают соотношение вида: 

1.j i j j i j
i j i j

j i j j i j

CC AC C C A C
CAC ACC

C A C C C A C C
− −

⋅ = ⋅ = ⋅ =
− −

 

С учётом этого факта получим следующее соотношение для m -угольника: 

 ( )1 2 1 2 3 2 1 1... 1 .m
m m mA A B A A B A A B− −⋅ ⋅ ⋅ = −  (1.4) 

Что и требовалось доказать. 

При 3m = , получим частный случай – теорему Менелая. Ввиду широкого 

использования соотношения (1.3) для доказательств других теорем точечного 

исчисления и параметризации геометрических объектов в точечном исчислении, 

основная теорема о простых отношениях получила в точечном исчислении 

название О-теорема [3, 2]. 
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1.3.3. S-теорема и её доказательство 

S-теорема. Площадь треугольника 1 2 3A A A , измеренного единицей 

площади симплекса ABC , равна определителю третьего порядка, составленному 

из параметров его вершин. 

1 2 3

1 1 1

2 2 2

3 3 3

.A A A

ABC

p q r
S

p q r
S

p q r
=  

Доказательство. Пусть в симплексе ABC  (рис. 1.8) заданы точки: 

( )1 1 1 1, ,A p q r , ( )2 2 2 2, ,A p q r , ( )3 3 3 3, ,A p q r . Геометрический смысл параметров ,ip  

iq  и ir , изложен в работах [1, 3]. 

 
Рисунок 1.8. Геометрический смысл S-теоремы точечного исчисления 

Следовательно, 1 1 1 1A Ap Bq Cr= + + ; 2 2 2 2A Ap Bq Cr= + + ; 

3 3 3 3A Ap Bq Cr= + + . 

Выполнив покоординатный расчёт для каждого их точечных уравнений 

треугольника 1 2 3A A A , получим: 

1

1

2

2

3

3

1 1 1
1 1 1 1

1 1 1

2 2 2
2 2 2 2

2 2 2

3 3 3
3 3 3 3

3 3 3

.

.

.

A A B C

A A B C

A A B C

A A B C

A A B C

A A B C

x x p x q x r
A Ap Bq Cr

y y p y q y r

x x p x q x r
A Ap Bq Cr

y y p y q y r

x x p x q x r
A Ap Bq Cr

y y p y q y r

= + += + +  = + +
= + += + +  = + +
= + += + +  = + +
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Определим площадь треугольника 1 2 3A A A  с помощью определителя 

третьего порядка: 

1 1

1 2 3 2 2

3 3

1
1 1.
2

1

A A

A A A A A

A A

x y

S x y

x y

=  

С учётом координат точек треугольника 1 2 3A A A  получим: 

1 2 3 1 2 3

1 2 3 1 2 3 1 2 3

1 2 3 1 2 3

1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3 3

1
2 1 .

1

A A A A A A

A A A A A A A A A

A A A A A A

x p x q x r y p y q y r

S x p x q x r y p y q y r

x p x q x r y p y q y r

+ + + +

= + + + +

+ + + +

 

Раскроем полученный определитель и проведём соответствующие 

преобразования, после которых выражение принимает следующий вид: 

1 1 2 21 1

1 2 3

3 3 3 32 2

1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3 3

1 1 1
2 1 1 1 .

1 1 1

A A A AA A
A A A

A A A AA A

p q p r q rx y x yx y
S p q p r q r

x y x yx y
p q p r q r

= + +  

Учитывая условие принадлежности точек треугольника 1 2 3A A A  плоскости 

симплекса ABC : 1 1 1 1p q r+ + = ; 2 2 2 1p q r+ + = ; 3 3 3 1p q r+ + = , получим: 

1 2 3

1 1

2 2

3 3

1 1
2 1 1.

1 1

A A

A A A B B

C C

p q x y
S p q x y

p q x y
=  

Как видно из полученного выражения, определитель в правой части равен 

удвоенной площади треугольника ABC . Следовательно: 

1 2 3

1 1

2 2

3 3

1
1 .
1

A A A

ABC

p q
S

p q
S

p q
=  

Воспользуемся условием принадлежности точек треугольника 1 2 3A A A  

симплексу ABC  и заменим последний столбец полученного определителя 

однотипными выражениями 1i i ip q r+ + = : 
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1 2 3

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

.A A A

ABC

p q p q r
S

p q p q r
S

p q p q r

+ +
= + +

+ +
 

Учитывая свойства определителей матриц, получим: 

1 2 3

1 1 1

2 2 2

3 3 3

.A A A

ABC

p q r
S

p q r
S

p q r
=  

Что и требовалось доказать. 

Аналогичным образом доказывается теорема об отношении объёмов 

тетраэдров, которая в точечном исчислении получила название V-теорема. Её 

можно рассматривать, как результат обобщения S-теоремы точечного 

исчисления на многомерное пространство, поскольку она является справедливой 

и для пространств больших размерностей. 

В результате на примере доказательств основополагающих теорем 

точечного исчисления показана возможность использования простого 

отношения трёх точек прямой для параметризации геометрических объектов с 

учётом обобщения на многомерное пространство. Используя одну из площадей 

треугольника в качестве единицы измерения, доказанные теоремы позволяют 

измерить площадь любого другого треугольника, или многоугольника на их 

основе, с помощью простых отношений трёх точек, инвариантных 

параллельному проецированию. 

 
1.3.4. V-теорема и её геометрический смысл 

Объем тетраэдра 1 2 3 4A A A A , измеренного единицей объема симплекса 

ABCD , равен определителю четвертого порядка, составленному из параметров 

его вершин. 

Пусть в симплексе ABCD  (рис. 1.9) заданы точки 1 1 1 1 1( , , , )A p q r s , 

2 2 2 2 2( , , , )A p q r s , 3 3 3 3 3( , , , )A p q r s  и 4 4 4 4 4( , , , )A p q r s . Следовательно, 
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1 1 1 1 1A Ap Bq Cr Ds= + + + , 2 2 2 2 2A Ap Bq Cr Ds= + + + , 3 3 3 3 3A Ap Bq Cr Ds= + + +  и 

4 4 4 4 4A Ap Bq Cr Ds= + + + . 

 
Рисунок 1.9. Геометрический смысл V-теоремы точечного исчисления 

Тогда справедливо важное для практических приложений утверждение V-

теоремы: 

1 1 1 1

2 2 2 21234

3 3 3 3

4 4 4 4

,
ABCD

p q r s
p q r sV
p q r sV
p q r s

=  

где 1234V  – объем тетраэдра 1 2 3 4A A A A  (рис. 1.9); ABCDV  – объем симплекса ABCD . 

V-теорема доказывается аналогично S-теореме поэтому её доказательство 

в данной монографии приводить не будем. 

Как видно из приведенных выше двух теорем (S-теорема и V-теорема) 

имеют обобщение на многомерное пространство. 

 
1.3.5. Определение точки пересечения прямых в точечном исчислении 

Приведенные выше S-теорема и V-теорема имеют большое прикладное 

значение в моделировании кривых линий на основе конструктивных алгоритмов 

инженерной геометрии. Например, для определения точки пересечения двух 

прямых в точечной форме. 

Рассмотрим общий случай пересечения, при котором отрезки прямых 1 2A A  

и 3 4A A  принадлежат симплексу плоскости ABC  (рис. 1.10). 
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Рисунок 1.10. Определение точки пересечения прямых в симплексе CAB  

Тогда исходные точки 1 2 3 4,  ,  ,  A A A A  определяются в симплексе CAB  с 

помощью параметров ip  и iq : 

( ) ( )
( ) ( )
( ) ( )
( ) ( )

1 1 1

2 2 2

3 3 3

4 4 4

,
,
,
.

A A C p B C q C

A A C p B C q C

A A C p B C q C

A A C p B C q C

= − + − +

= − + − +

= − + − +

= − + − +

 

Выбираем один из отрезков и определяем его с помощью линейного 

параметра. Например, определим отрезок прямой 1 2A A  с помощью параметра 

1

2 1

MA
A A

λ = : 

 ( ) ( )( ) ( )( )2 1 1 21 1 21 1 ,AM A A A p p q q CC B Cλ λ λ= − + = + + + +− −  (1.5) 

где 21 2 1p p p= − ; 21 2 1q q q= − . 

Точка M  своим движением заполняет одномерное пространство и 

формирует отрезок 1 2A A . При этом изменяется площадь переменного 

треугольника 3 4MA A . В точке K  эта площадь равна нулю. Следовательно, задача 

сводится к тому, чтобы определить такое значение параметра λ , при котором 

треугольник 3 4MA A  выродится в прямую и его площадь будет равна нулю. 

В соответствии с S − теоремой точечного исчисления, получим: 
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3 4

21 1 21 1

3 3

4 4

1
1 .
1

MA A

ABC

p p q q
S

p q
S

p q

λ λ+ +
=  

Отношение площадей треугольников, также как и отношение длин 

отрезков, является инвариантом параллельного проецирования. При этом 

площадь плоского симплекса ABC  не может равняться нулю по определению. 

Кроме того, она не зависит от параметра λ . Следовательно, отношение 

площадей существует и принимает различные значения при движении точки M  

по отрезку 1 2A A . Определим значение параметра λ , при котором отношение 

площадей будет равно нулю: 

( ) ( )
21 1 21 1

3 3 21 1 34 21 1 34 3 4 3 4

4 4

3 4 3 4 1 34 1 34

21 34 21 34

1
1 0.
1

,

p p q q
p q p p q q q p p q q p
p q

q p p q p q q p
p q q p

λ λ
λ λ

λ

+ +
= + − + + − =


− − +=

−

 

где 34 3 4p p p= − ; 34 3 4q q q= − . 

Подставив полученное выражение в точечное уравнение (1.5), получим: 

( )

( )

3 4 3 4 1 34 1 34
21 1

21 34 21 34

3 4 3 4 1 34 1 34
21 1

21 34 21 34

.

q p p q p q q pK A C p p
p q q p

q p p q p q q pB C q q C
p q q p

 − − += − + + − 
 − − ++ − + + − 

 

Полученное точечное уравнение является достаточно громоздким, что 

объясняется совместным взаимодействием восьми параметров, определяющих 

исходные точки 1 2 3 4,  ,  ,  A A A A . На практике более эффективным является 

использование трёх точек симплекса плоскости в качестве исходных. Тогда 

параметров в итоговом уравнении будет всего два, и оно значительно сократится. 

При построении точки пересечения двух прямых, принадлежащих 

плоскости, можно использовать полученное уравнение, как формулу. Но при 

решении практических задач точки, определяющие прямые, занимают частное 
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положение, и удобнее использовать не готовую формулу, а геометрический 

алгоритм ее определения. 

Конечно, определить точку пересечения двух прямых можно и другими 

способами. Например, составляя и решая систему уравнений или с 

использованием того же простого отношения трёх точек прямой, описанного 

выше. Вместе с тем, описанный инструмент определения точки пересечения 

прямых является инвариантным по отношению к параллельному проецированию 

и позволяет получить результат в точечной форме, не переходя к их 

координатам, что позволяет использовать его многократно в дальнейшем при 

моделировании многопараметрических геометрических объектов многомерного 

аффинного пространства, и только итоговое точечное уравнение представить в 

параметрическом виде, выполнив его покоординатный расчёт. 

Аналогичным образом определяется и точка пересечения прямой с 

плоскостью. Только вместо треугольника переменной площади применяется 

тетраэдр переменного объёма, для обнуления которого используется V-теорема 

(теорема об отношении объёмов тетраэдров) точечного исчисления [3, 2]. 

 

1.4. Метрический оператор трех точек и его свойства 

Особенность точечного исчисления заключается в том, что мерой 

(единицей измерения) геометрических объектов, расположенных в пространстве 

симплекса, является геометрический объект, образованный вершинами 

симплекса. Так, например, единицей измерения длин на прямой AB  является 

длина отрезка AB ; единицей площади в плоскости ABC  является площадь 

треугольника ABC ; единицей объема в пространстве ABCD  служит объем 

тетраэдра ABCD  и т.д. Историческая практика приняла постоянные, строго 

зафиксированные единицы измерения длины, площади, объема геометрических 

объектов. Чтобы ввести в рассмотрение эти постоянные единицы измерения, 

вводится понятие метрического оператора. 
Основу параметризации в точечном исчислении составляют параметры 

текущей точки M : 
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– для прямой AB  с текущей точкой M :  

M Ap Bq= + ,  1p q+ = , где ,MB AMp q
AB AB

= = , 

– для плоскости ABC : 

,   1M Ap Bq Cr p q r= + + + + = , где , ,A B C

A B C

MM MM MMp q r
AM BM CM

= = = , 

– для пространства ABCD : 

,   1M Ap Bq Cr Ds p q r s= + + + + + + = , 

где , , ,A B C D

A B C D

MM MM MM MMp q r s
AM BM CM DM

= = = = . 

Во всех приведенных уравнениях параметры ,  ,  ,  p q r s  представляют 

собой отношение отрезков прямой. В геометрии параллельных проекций играет 

большую роль не только отношение отрезков, как простое отношение трех точек 

прямой, но и произведение двух направленных отрезков прямой, как 

метрический оператор трех точек. Пусть заданы три точки ,  ,  A B C  и точка H  – 

основание перпендикуляра, опущенного из точки C  на прямую AB  (рис. 1.11). 

 
Угол 0 α π≤ ≤  (угол с вершиной A , измеряемый в направлении от точки 

B  к точке C ) характеризует положение точки C  относительно прямой AB . Так, 

например, при 0α =  – точка C  принадлежит прямой AB ; при α  > 0 – точка C  

находится по одну, а при α  < 0 – по другую сторону от прямой AB . 

Рисунок 1.11. Геометрическая интерпретация 
метрического оператора трёх точек 
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Окончательно можно предложить следующее определение метрического 

оператора трех точек. 

Определение. Метрическим оператором A
BCΣ  (читается сигма BC  при 

A ) называется действительное число, равное произведению длин направленных 

отрезков AH  и AB : 

( )( ).A
BC AH AB B A C AΣ = ⋅ = Σ − −  

Учитывая, что cosAH AC α= ⋅  будем иметь 

cos .A
BC AC AB αΣ = ⋅ ⋅  

Утверждение. Произведение длин двух отрезков, выходящих из одной 

точки, на косинус угла между ними определяет метрический оператор, а на синус 

этого угла – площадь. 

Учитывая теорему косинусов для треугольника CAB , получим выражение 

метрического оператора через квадраты длин: 
2 2 2

.
2

A
BC

AB AC BC+ −Σ =  

Через координаты метрический оператор трех точек вычисляется по 

формуле: 

( )( )
( )( ) ( )( ) ( )( ).

А
ВС

B A C A B A C A B A C A

B A C A
x x x x y y y y z z z z

Σ = Σ − − =
= − − + − − + − −

 

Обратим внимание на то, что метрический оператор трех точек известен из 

математики как скалярное произведение двух векторов, образованных тремя 

точками. В геометрии проекций он позволяет нам решать метрические задачи. 

Прежде всего, отметим то, что положение точки H  не меняется и тогда, когда 

точка C  занимает любое другое положение на плоскости, перпендикулярной AB  

и проходящей через ту же точку H . 

Для треугольника ABC  существуют три метрических оператора 

относительно каждой из его вершин: 
A A
BC C BAB AH AC AHΣ = Σ = ⋅ = ⋅ ; B B

AC C ABA BH BC BHΣ = Σ = ⋅ = ⋅ ; 
C C
AB B ACA CH CB CHΣ = Σ = ⋅ = ⋅ . 



36 

Для работы с метрическими операторами очень полезно выделить их 

основные свойства: 

1. Перестановка местами нижних индексов в обозначении метрического 

оператора не меняет его численного значения ( A A
BC CBΣ = Σ ). 

2. Если нижние индексы в метрическом операторе трех точек одинаковы, 

то его численное значение равно квадрату длины отрезка. 

3. Если верхний индекс в обозначении метрического оператора трех точек 

совпадает с нижним, то его значение равно нулю ( 0B A
AB ABΣ = Σ = ). 

4. Квадрат длины стороны треугольника равен сумме двух метрических 

операторов, верхние индексы которых указывают на вершины, определяющие 

эту сторону: ( 2( )A B A B
BB AA ABΣ + Σ = Σ = Σ = ). 

5. Треугольник ABC  – прямоугольный, если метрический оператор при 

одной из его вершин равен нулю. 
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ГЛАВА 2. КОНСТРУКТИВНЫЕ ГЕОМЕТРИЧЕСКИЕ АЛГОРИТМЫ 
МОДЕЛИРОВАНИЯ КРИВЫХ 

 

Большинство приведенных в монографии параметризаций кривых 

сопровождаются геометрическими схемами с обозначениями точек, прямых, 

длины отрезков, углов и т.п., необходимых для математического описания 

данной конкретной параметризации, и соответствуют полученным точечным 

уравнениям. Принятые обозначения действуют в рамках описанной 

параметризации и могут отличаться от других параметризаций. Помимо того, 

используются устоявшиеся в геометрии обозначения, которые свойственны 

большинству параметризаций (рис. 2.1). В дальнейшем они могут 

использоваться для параметризации кривых линий без дополнительных 

пояснений. 

 
Рисунок 2.1. Обозначения в симплексе ABC  

На рис. 2.1 приняты следующие обозначения: 

ABC  – симплекс двухмерного пространства, представленный в виде трёх 

независимых точек ,  ,  A B C , не лежащих на одной прямой; 

,  ,  a b c  – длины сторон треугольника ABC , которые лежат соответственно 

напротив вершин ,  ,  A B C ; 

,  ,  α β γ  – углы в треугольнике ABC , которые лежат соответственно при 

вершинах ,  ,  A B C . 
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2.1. Параметризация кривых второго порядка в точечном исчислении 
Кривые второго порядка играют ключевую роль в различных научных и 

технических областях. Благодаря своим уникальным оптическим свойствам, они 

нашли широкое применение в светотехнике, акустике и электродинамике. Эти 

же свойства обуславливают их использование при проектировании 

геометрических форм в строительных конструкциях. Кроме того, орбиты 

небесных тел во Вселенной с высокой точностью аппроксимируются данными 

кривыми. 

В инженерной практике кривые второго порядка часто служат основой для 

формообразования поверхностей и тел различных зданий и сооружений, деталей 

машин и механизмов. Вместе с тем, в современных системах 

автоматизированного проектирование использование необходимых на практике 

параметризаций кривых затруднено из-за ограниченности инструментов 

геометрического моделирования. Это актуализирует задачу изучения кривых 

второго порядка, представленных в разных параметрических формах. 

К основным кривым второго порядка, рассматриваемым в данном 

подразделе монографии, относятся эллипс (частным случаем которого является 

окружность), гипербола и парабола. 

 

2.1.1. Задание эллипса в различных параметризациях 
Вне зависимости от системы координат, эллипс определяется как 

геометрическое место точек плоскости, сумма расстояний которых от двух 

данных точек 1F  и 2F  (рис. 2.2) есть постоянное число 2а : 

 1 2 2 ,F M F M a+ =  (2.1) 

где 1F  и 2F  – фокусы эллипса, расстояние между которыми обозначается через 

2с  и называется фокусным расстоянием; 

M  – текущая точка эллипса; 

а – большая полуось эллипса 2CA . 
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Точка С – середина отрезка 1 2F F , соединяющего фокусы, называется 

центром эллипса, а вся прямая 1 2F F  называется его фокальной или первой осью. 

Прямая, проходящая через центр эллипса перпендикулярно к фокальной оси, 

называется второй (малой) осью эллипса. Точки 1 2 1 2,  ,  ,  A A B B , пересечения 

эллипса с его осями, называются вершинами эллипса. Для эллипса известны 

соотношения: 

 2 2 ,c a b= −  (2.2) 

где b  − малая полуось эллипса и определяется как 2CB . 

Отношение половины расстояния между фокусами эллипса (фокальное 

расстояние) к большей полуоси эллипса называется эксцентриситетом эллипса и 

определяется выражением: 

 1.ce
a

= <  (2.3) 

Фокальный параметр (половина хорды, проведенной через фокус 

параллельно малой оси): 

 
2

.bp
a

=  (2.4) 

При заданном центре С и двух вершинах А и В эллипса (определяющих 

полуоси эллипса) в симплексе этих точек при 90BCA∠ = °  (рис. 2.3) справедливы 

точечные соотношения: 

Рисунок 2.2. Определение эллипса в симплексе  
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( )
( )

( )

( )

1

2

1 2

2

2

,
,

2 ,

,

.

C

AA

C

BB

F A C e C

F A C e C
F F C

a CA A C

b CB B C

= − +

= − − +
+ =

= = = −

= = = −

 
 

 (2.5) 

 
Точечное уравнение эллипса (окружности) может принимать различные 

формы в зависимости от выбора параметра, определяющего его текущую точку 

М. Каждая параметризация имеет свой класс задач, которые проще решаются 

именно при данной параметризации. Это требует поиска различных способов 

задания уравнения эллипса в точечном исчислении. Рассмотрим несколько 

основных графических способов построения эллипса, по которым зададим 

точечные уравнения кривой в различных параметризациях. 

 

2.1.1.1. Эллипс с текущим параметром центрального угла 
Задача. Определить точечное уравнение эллипса с текущим параметром 

центрального угла (рис. 2.4). 

Рисунок 2.3. Эллипс в симплексе  
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Решение. По теореме косинусов, имеем: 

 2 2 2
1 2 cos .F M c cρ ρ ϕ= + −  (2.6) 

Согласно определению эллипса (2.1), получим: 

 ( )2 2 2
12 2 cos .a F M c cρ ρ ϕ− = + +  (2.7) 

Вычитая из (2.7) выражение (2.6), получим: 

 ( )14 4 cos ,a a F M cρ ϕ− =  (2.8) 

Отсюда определяем 1F M : 

 
2

1
cos .a cF M

a
ρ ϕ−=  (2.9) 

Далее, подставляя 1F M  из выражения (2.9) в (2.6), после преобразований, 

находим: 

 
2 2 2 2

.
sin cos

ab
a b

ρ
ϕ ϕ

=
+

 (2.10) 

Используя полярную параметризацию плоскости, получим искомое 

точечное уравнение эллипса с текущим параметром угла ϕ  и вершиной в центре 

эллипса: 

 ( ) ( )
2 2 2 2 2 2 2 2

cos sin ,
sin cos sin cos

b aM A C B C C
a b a b

ϕ ϕ
ϕ ϕ ϕ ϕ

= − + − +
+ +

 (2.11) 

где [ ]0; 2ϕ π∈  – центральный угол эллипса, определяющий текущую точку M  

эллипса при полном обходе линии кривой. 

Рисунок 2.4. Задание эллипса через определение кривой 
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Задача. Определить точечное уравнение эллипса, ось которого 

расположена под углом к прямой общего положения. 

Решение. В плоскости CAB  построим эллипс с центром C , осями ,CP m=  

CQ n= . Большая ось CP  образует с прямой AB  угол θ  (рис. 2.5). 

 
Для решения поставленной задачи необходимо определить по заданным 

условиям точки P  и Q, а затем применить уравнение эллипса (2.11): 

( ) ( )
2 2 2 2 2 2 2 2

cos sin .
sin cos sin cos

n mM P C Q C C
m n m n

ϕ ϕ
ϕ ϕ ϕ ϕ

= − + − +
+ +

 

Определим точку P  из треугольника CAB : 

( ) ( )

sin sin
sin sin sin sin sin

sin sin1 .
sin sin

AK b CK b bAK CK

b bK A C B C C
c c

τ α
τ θ α θ θ

τ τ
θ θ

= = → = → = →

 → = − − + − + 
 

 

где 0 τ γ≤ ≤ , τ π α θ= − − . 

После преобразований, точка К имеет вид: 

( ) ( ) ( ) ( )sin sin sin
,

sin sin
b b

K A C B C C
c c

θ α θ α θ
θ θ

− + +
= − + − +  

где π α γ θ π α− − ≤ ≤ − . 

Далее имеем: 

Рисунок 2.5. Построение эллипса под углом к прямой общего положения 
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( ) ( ) ( ) ( ) ( )sin sinsin .
sin sin

mm mP K C C A C B C C
CK b c c

α θ α θθ
α α

+ + 
= − + = − − + − + 

 
 

Точка P  определена, приступим к определению точки Q . Для её 

определения применим следующий геометрический алгоритм: 

1. Повернем CA  на ω∠  в плоскости CAB , фиксируя A


. 

2. На прямой CA


 фиксируем CQ n= . 

Для второго пункта используем точечную формулу поворота на угол 

3
2 2
π πω τ α θ= + = − −  в направлении точки B : 

( ) ( )

( ) ( ) ( ) ( )

,

cos cos
,

sin sin

CAB CAA

ABC ABC

S S
A A C B C C

S S
b

A C A C B C
a

γ α θ α θ
γ γ

= − + − +

+ + +
= − + − +

 




 

где 2 2sin cos( )CAAS b bω α θ= = − +


, 

( ) ( )sin cosCABS ab abγ ω γ α θ= − = + +


, 

,  ,  α β γ – углы заданного треугольника ABC . 

3. Определим точку Q : 

( ) .nQ A C C
b

= − +


 

Все точечные уравнения получены, а это означает, что постеленная задача 

решена и результат рационально представить в виде точечного вычислительного 

алгоритма. 

 

Вычислительный алгоритм построения эллипса, ось которого 
расположена под углом к прямой общего положения 

1. Исходные данные – ,  ,   ,  , ,  A B C m nθ . 

2. ( ) ( ) ( ) ( )sin sinsin .
sin sin

mmP A C B C C
b c c

α θ α θθ
α α

+ + 
= − − + − + 

 
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3. ( ) ( ) ( ) ( )cos cos
sin sin

n n
Q A C C B C

b a
γ α θ α θ

γ γ
+ + +

= − + − + , 

где ,  ,  α β γ – углы треугольника ABC . 

4. ( ) ( )
2 2 2 2 2 2 2 2

cos sin
sin cos sin cos

n mM P C Q C C
m n m n

ϕ ϕ
ϕ ϕ ϕ ϕ

= − + − +
+ +

, 

где 0 2ϕ π≤ ≤ . 

В решении этой задачи использованы: точечные уравнения эллипса и 

прямой; метрический оператор для определения длин и углов; формула поворота 

на 90° . 

Таблица 2.1. Эллипс в плоскости общего положения с различным углом 

наклона большей оси к прямой общего положения 

Значение угла θ  Графическая интерпретация 

0θ =  

 

4
πθ =  

 

2
πθ =  
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3
4
πθ =  

 

θ π=  

 
В таблице 2.1 синим треугольником показан исходный симплекс CAB , 

зелёным – полуоси эллипса. 

 
2.1.1.2. Эллипс с текущим параметром центрального радиуса 

Задача. Определить точечное уравнение эллипса с текущим параметром 

центрального радиуса. 

Решение. Из ранее полученного соотношения (2.10) определим sin xϕ = , 

тогда получим: 

 ( )2 2 2 2 2 2 21 .a x b x a bρ  + − =   (2.12) 

После преобразования (2.12), имеем: 

 
( )
( )

2 2 2
2 2

2 2 2sin .
b a

x
a b

ρ
ϕ

ρ
−

= =
−

 (2.13) 

Далее, с учетом (2.13), определим: 

 
( )
( )

( )
( )

2 2 2 2 2 2
2

2 2 2 2 2 2cos 1 .
b a a b

a b a b
ρ ρ

ϕ
ρ ρ

− −
= − =

− −
 (2.14) 

После преобразования (2.11), с учетом (2.13) и (2.14), получим точечное 

уравнение эллипса с текущим параметром радиуса ρ  (рис. 2.4): 

 ( ) ( )
2 2 2 2

2 2 2 2
,b aM A C B C C

a b a b
ρ ρ− −= − + − +

− −
 (2.15) 
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где [ ]; b aρ ∈  – центральный радиус эллипса, определяющий текущую точку M  

эллипса при обходе первой четверти кривой. 

При изменении знака перед дробями в уравнении эллипса (2.15) с «+» на 

«–», получим уравнение эллипса в остальных трех четвертях. 

 

2.1.1.3. Эллипс с текущим параметром угла с вершиной в фокусе кривой 
Задача. Определить точечное уравнение эллипса с угловым параметром 

при вершине в фокусе кривой (рис. 2.6). 

 
Решение. Из аналитической геометрии известно полярное уравнение 

эллипса: 

2 1 cos
pF M

e
ρ

ϕ
= =

−
, 

где 
2bp

a
=  – фокальный параметр эллипса; 

1ce
a

= <  – эксцентриситет кривой; 

[ ]0; 2ϕ π∈  – угол с вершиной в фокусе эллипса, определяющий текущую 

точку M эллипса при полном обходе линии кривой. 

Используя полярную параметризацию плоскости, зададим точечное 

уравнение эллипса, в симплексе точек 2ABF , через параметр угла ϕ  (рис. 2.6): 

Рисунок 2.6. Геометрическая схема определения эллипса с 
текущим параметром угла с вершиной в фокусе кривой 
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 ( ) ( )
( )( ) ( ) ( )2 2 2

sin arccos sin .
1 cos 1 cos
ap e pM A F B F F

e ab cb e b
ϕ ϕ

ϕ ϕ
−

= − + − +
− + −

 (2.16) 

После преобразования (2.16), получим точечное уравнение эллипса в 

симплексе точек 2ABF : 

 ( ) ( )
( )( ) ( ) ( )2 2 2

cos sin sin .
1 cos 1 cos

b b c bM A F B F F
a e a c a e

ϕ ϕ ϕ
ϕ ϕ
−

= − + − +
− + −

 (2.17) 

После подстановки выражения фокуса 2F  из (2.5) в (2.17), при заданном 

центре С и двух вершинах А и В эллипса в симплексе этих точек, при 90BCA∠ = °  

(рис. 2.6), точечное уравнение эллипса примет вид: 

 ( ) ( )
2 2

2 2 2 2

cos sin ,
cos cos

a a b bM A C B C C
a a b a a b

ϕ ϕ
ϕ ϕ

− −= − + − +
− − − −

 (2.18) 

где [ ]0; 2ϕ π∈  – угол с вершиной в фокусе эллипса, определяющий текущую 

точку M эллипса при полном обходе линии кривой. 

 

2.1.1.4. Эллипс, полученный сжатием окружности к одному из её диаметров 
Используя полярную параметризацию плоскости, зададим точечное 

уравнение окружности в симплексе точек АВС при 90BCA∠ = °  через параметр 

угла ϕ  (рис. 2.7). 

 

Рисунок 2.7. Геометрическая схема определения 
эллипса сжатием окружности 
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Пусть радиус окружности CA a=  и соответствует большой полуоси 

эллипса, тогда CB b=  и соответствует малой полуоси эллипса, тогда: 

 ( ) ( )cos sin .aP A C B C C
b

ϕ ϕ= − + − +  (2.19) 

Проведем из центра окружности произвольный луч, пересекающий эту 

окружность в точке P . Рассмотрим прямоугольный треугольник CQPΔ : 

 cos ,CQ CQ
CP CA

ϕ = =  (2.20) 

Тогда основание высоты треугольника PQ  определяется: 

 ( )cos .Q A C Cϕ= − +  (2.21) 

Определим текущую точку M эллипса, введя коэффициент сжатия: 

 .QM CN bk
QP CP a

= = =  (2.22) 

Применив выражение (2.22), получим: 

 ( ) .bM P Q Q
a

= − +  (2.23) 

Подставив выражения точек P  и Q  в выражение (2.23), получим точечное 

уравнение эллипса, построенного как результат сжатия окружности к одному из 

ее диаметров, в симплексе точек АВС через параметр угла сжатия ϕ : 

 ( ) ( )cos sin ,M A C B C Cϕ ϕ= − + − +  (2.24) 

где [ ]0; 2ϕ π∈  – угол сжатия (растяжения), определяющий текущую точку M  

эллипса при полном обходе линии кривой. 

Полученная параметризация эллипса соответствует параметризации 

окружности, приведенной в [31]. 

Параметр ϕ  в полученном уравнении эллипса относится к окружности 

радиуса а, которая сжимается в одном из направлений до малой полуоси b  

эллипса. В уравнении эллипса (2.24) полуоси не принимают участие, так как они 

определены точками A , B  и C  ( CA a= , CB b= ). 
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Полученное уравнение эллипса ввиду своей простоты и удобства 

использования получило наибольшее распространение в точечном исчислении 

для параметризации поверхностей и геометрических тел, реализации операции 

вращения. Вместе с тем, использование тригонометрических функций не всегда 

может быть удобным, поэтому путём замены переменных можно перейти от 

углового параметра ϕ  к линейному параметру t . Если исходить из того, что 

функция sinϕ  меняется от 0 до 1, то её можно заменить на линейный параметр 

sin tϕ = . Тогда ( )2 2cos 1 sin 1 tϕ ϕ= − = − . В результате получим следующую 

параметризацию эллипса по сопряжённым осям: 

( ) ( )21 ,M A C t B C t C= − − + − +  

где t  – текущий параметр. 

При [ ]0,1t ∈  получим эллиптическую дугу AB , а при [ ]1,1t ∈ −  – половину 

эллипса, разделённого прямой BC . 

 

2.1.1.5. Эллипс, построенный по паре сопряженных диаметров 
(вариант 1) 

Пусть заданы центр С эллипса и две его вершины А и В (определяющие 

половины сопряженных диаметров) в симплексе этих точек при произвольном 

значении BCA∠  (рис. 2.8). 

 

Рисунок 2.8. Задание эллипса по паре сопряженных диаметров 
(вариант первый) 
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Согласно графическому способу построения эллипса, введем одинаковый 

текущий параметр по сопряженным диаметрам эллипса для определения 

текущей точки М эллипса: 

 .CP NQt
CB NB

= =  (2.25) 

Откуда, получим точечные выражения: 

 
( )
( )

,
.

P B C t C

Q B N t N

= − +

= − +
 (2.26) 

Учитывая, что N A B C= + −  согласно правилу параллелограмма, имеем: 

 ( ) .Q C A t A B C= − + + −  (2.27) 

После преобразования (5.36), получим: 

 ( ) ( )1 1 .Q A t B C t= − + + −  (2.28) 

Вторая вершина эллипса, на большем сопряженном диаметре, 

определяется в виде: 

2 .K C A= −  

Введем дополнительный текущий параметр v для определения текущей 

точки M луча КР: 

 ( ) .M P K v K= − +  (2.29) 

Подставив выражения точек P  и K  в выражение (2.29), получим точечное 

уравнение луча КР: 

 ( )( ) 2 .M B C t C A v C A= − − + + −  (2.30) 

Текущая точка M эллипса определяется как точка пересечения луча КР и 

отрезка QА, входящих в состав двух пучков. Для определения точки пересечения 

луча и отрезка, применим S-теорему точечного исчисления: 

1 0 0
1 1 1 0,

1 2
t t

v vt v vt
− − =
− − −

 

откуда получим: 

( )2 1 0.v vt vt t− − − − =  
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После преобразования, имеем: 

 2
2 .

1
v

t
=

+
 (2.31) 

После подстановки выражения параметра v в выражение (2.31), точечное 

уравнение эллипса, построенного по паре сопряженных диаметров (вариант 

первый), примет вид: 

 ( ) ( )
2

2 2
1 2 ,
1 1

t tM A C B C C
t t

−= − + − +
+ +

 (2.32) 

где [ ]0; 1t ∈  – параметр уравнения эллипса (отношение), определяющий 

текущую точку M эллипса при обходе четверти кривой. 

Эта параметризация эллипса соответствует параметризации окружности, 

приведенной в [31]. 

Очевидно, что при очередном (соответствующем) изменении знака перед 

дробями в уравнении эллипса (2.32) с «+» на «–», получим уравнение эллипса в 

остальных трех четвертях. 

Два сопряженных и взаимно-перпендикулярных диаметра эллипса (при 

90BCA∠ = ° ) называются его осями, а точки А и В – его вершинами. 

Следовательно, выбирая точку С за центр эллипса с 90BCA∠ = ° , получим еще 

одно уравнение эллипса, построенного по паре сопряженных диаметров, при 

заданных вершинах и центре эллипса. 

 

2.1.1.6. Эллипс, построенный по паре сопряженных диаметров 

(вариант 2) 
Согласно графическому способу построения эллипса, представленному в 

работе, для построения эллипса должны быть даны (рис. 2.9): диаметр КА 

эллипса, направление касательных в концах этого диаметра, через отрезок BC 

(определяет направление второго сопряженного диаметра) и третья точка В, 

принадлежащая эллипсу. 
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В симплексе заданных точек АВК, зададим направление второго 

сопряженного диаметра через параметр: 

.KC
KA

λ =  

Тогда, получим выражение точки С, которая в паре с точкой В определяет 

направление второго сопряженного диаметра: 

( ) .C A K Kλ= − +  

Проведем луч NL параллельно второму сопряженному диаметру до 

пересечения с лучом КВ и отрезком ВА. Для этого введем текущий параметр, 

определяющий начало луча NL, а в дальнейшем и текущую точку М эллипса: 

 .KNt
KA

=  (2.33) 

После преобразования (2.33), получим: 

( ) .N A K t K= − +  

Рассмотрим параллелограмм CNLB. Согласно правилу параллелограмма, 

L B N C= + − . Тогда имеем: 

( )( ) .L A K t Bλ= − − +  

Точечное уравнение луча NL имеет вид: 

 ( ) ,P L N v N= − +  (2.34) 

где v – параметр, определяющий текущую точку луча NL. 

Рисунок 2.9. Задание эллипса по паре сопряженных диаметров 
(вариант второй) 
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После преобразования выражения (2.34), путем подстановки выражений 

точек N и L, получим: 

 ( )( ) ( ) .P A K t v B K v Kλ= − − + − +  (2.35) 

Определим точку пересечения луча NL с отрезком ВА. По S-теореме для Δ 

ABP, имеем: 

1 0 1
0 1 1 0,

1t v vλ
=

−
 

откуда, получим: 

 1 0.v t vλ− − + =  (2.36) 

После преобразования (2.36), имеем: 

1 .
1

tv
λ

−=
−

 

Подставив выражение параметра v в выражение (2.35), получим точку 

пересечения луча NL с отрезком ВА: 

 ( ) ( ) 1 .
1 1
t tP A K B K Kλ

λ λ
− −= − + − +
− −

 (2.37) 

Определим точку пересечения луча NL с лучом КВ. 

 ( ) .Q B K v K= − +  (2.38) 

В соответствии с S-теоремой точечного исчисления для Δ BKQ, имеем: 

0 1 1
0 0 1 0,

1t v vλ
=

−
 

откуда, получим: 

 0.t vλ− =  (2.39) 

После преобразования (2.39), имеем: 

.tv
λ

=  

После подстановки выражения параметра v в выражение (2.38), получим 

точку пересечения луча NL с лучом КВ: 
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( ) .tQ B K K
λ

= − +  

Согласно графическому способу построения эллипса, текущая точка M 

эллипса определяется как точка пересечения луча KP с отрезком QA. Точечное 

уравнение луча KP имеет вид: 

 ( ) ,M P K u K= − +  (2.40) 

где u – параметр, определяющий текущую точку M  луча KP. 

После преобразования выражения (2.40), путем подстановки выражения 

точки P, получим: 

 ( ) ( ) ( ) ( )1
.

1 1
t u t u

M A K B K K
λ
λ λ

− −
= − + − +

− −
 (2.41) 

Определим точку пересечения луча KP с отрезком QA. По S-теореме для 

ΔAQM, имеем: 

( ) ( )

1 0 1

0 1 0,

1
1

1 1

t

t u t u
λ

λ
λ λ

=

− −
− −

 

откуда, получим: 

( )
2

1
.

2
t

u
t t

λ
λ λ
−

=
− +

 

После подстановки выражения параметра u в выражение (2.41), точечное 

уравнение эллипса, построенного по паре сопряженных диаметров (вариант 

второй), примет вид: 

( ) ( ) ( ) ( )
2 2

1
,

2 2
t t t t

M A K B K K
t t t t

λ
λ λ λ λ
− −

= − + − +
− + − +

 

где [ ]0; 1t ∈  – текущий параметр уравнения эллипса (отношение), 

определяющий текущую точку М эллипса при обходе линии кривой в двух 

верхних четвертях. Текущая точка М эллипса в двух нижних четвертях 

определяется через центр кривой; 
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λ  − параметр, определяющий направление одного из сопряженных 

диаметров эллипса. 

Два сопряженных и взаимно-перпендикулярных диаметра эллипса (при 

90BCA∠ = ° ) называются его осями, а точки А и В – его вершинами. 

Следовательно, выбирая точку С за центр эллипса с 90BCA∠ = ° , получим еще 

одно уравнение эллипса, построенного по паре сопряженных диаметров, при 

заданных вершинах и центре эллипса. 

 
2.1.2. Моделирование гиперболы в различных параметризациях 

Вне зависимости от системы координат, гипербола определяется как 

геометрическое место точек плоскости, разность расстояний каждой из которых 

до двух фиксированных точек 1F  и 2F  есть положительное постоянное число 2 :а  

 2 1 2 ,F M F M a− =  (2.42) 

где 1F  и 2F  – фокусы гиперболы, расстояние между которыми обозначается через 

2с  и называется фокусным расстоянием (рис. 2.10); 

M – текущая точка гиперболы; 

а – первая полуось гиперболы CA . 

 
Точка C  – середина отрезка 1 2F F  (рис. 2.10), соединяющего фокусы, 

называется центром гиперболы, а вся прямая 1 2F F  называется ее фокальной или 

первой (действительной) осью. Прямая, проходящая через центр гиперболы 

перпендикулярно к фокальной оси, называется второй (мнимой) осью. Точка А, 

Рисунок 2.10. Определение гиперболы в симплексе САВ 
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пересечения гиперболы с ее действительной осью, называется вершиной 

гиперболы. Для гиперболы известны такие соотношения: 
2 2 ,c a b= +  

где b  − мнимая полуось гиперболы и определяется как CB . 

Отношение расстояния от центра гиперболы до фокуса к действительной 

полуоси гиперболы называется эксцентриситетом гиперболы и определяется 

выражением: 

1.ce
a

= >  

Фокальный параметр (половина хорды, проведенной через фокус 

параллельно мнимой оси): 
2

.bp
a

=  

При заданном центре C , вершине A  гиперболы и точке В (определяющих 

полуоси гиперболы – основной прямоугольник кривой) в симплексе этих точек 

при 90BCA∠ = °  (рис. 2.10) справедливы такие точечные соотношения: 

 

( )
( )

( )

( )

1

2

1 2

2

2

,
,

2 ,

,

.

C

AA

C

BB

F A C e C

F A C e C
F F C

a CA A C

b CB B C

= − +

= − − +
+ =

= = = −

= = = −

 
 

 (2.43) 

Точечное уравнение гиперболы может принимать различные формы в 

зависимости от выбора параметра, определяющего ее текущую точку М. Каждая 

параметризация имеет свой класс задач, которые проще решаются именно при 

данной параметризации. Это требует поиска различных способов задания 

точечного уравнения гиперболы в точечном исчислении. Рассмотрим основной 

графический способ построения гиперболы, который вытекает из определения, 

по которому зададим точечные уравнения кривой в различных параметризациях. 
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2.1.2.1. Гипербола с текущим параметром центрального угла 
Задача. Определить точечное уравнение гиперболы с текущим 

параметром центрального угла (рис. 2.11). 

 
Решение. По теореме косинусов, имеем: 

 2 2 2
1 2 cos .F M c cρ ρ ϕ= + −  (2.44) 

Согласно определению гиперболы (2.42), получим: 

 ( )2 2 2
12 2 cos .a F M c cρ ρ ϕ+ = + +  (2.45) 

Вычитая из (2.45) выражение (2.44), получим: 

 ( )14 4 cos ,a a F M cρ ϕ+ =  (2.46) 

откуда, имеем: 

 
2

1
cos .c aF M

a
ρ ϕ −=  (2.47) 

Далее, после подстановки выражения (2.47) в (2.44) и преобразований, 

находим: 

 
2 2 2 2

.
cos sin

ab
b a

ρ
ϕ ϕ

=
−

 (2.48) 

Используя полярную параметризацию плоскости, получим точечное 

уравнение гиперболы с текущим параметром угла ϕ  с вершиной в центре 

кривой: 

 ( ) ( )
2 2 2 2 2 2 2 2

cos sin ,
cos sin cos sin

b aM A C B C C
b a b a

ϕ ϕ
ϕ ϕ ϕ ϕ

= − + − +
− −

 (2.49) 

Рисунок 2.11. Задание гиперболы через определение кривой 
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где 0;  arcsin arcsin ;  arcsin 2 arcsin ;  2b b b b
c c c c

ϕ π π π π     ∈ − + −         
   – 

центральный угол гиперболы, определяющий текущую точку M гиперболы при 

полном обходе линии кривой. 

 

2.1.2.2. Гипербола с текущим параметром центрального радиуса 
Задача. Определить точечное уравнение гиперболы с текущим 

параметром центрального радиуса. 

Решение. Из ранее полученного соотношения (2.48) определим sin xϕ = , 

тогда получим: 

 ( )2 2 2 2 2 2 21 .b x a x a bρ  − − =   (2.50) 

После преобразования (2.50), получим: 

 
( )
( )

2 2 2
2 2

2 2 2sin .
b a

x
a b
ρ

ϕ
ρ

−
= =

+
 (2.51) 

Далее, с учетом (2.51), определим: 

 
( )
( )

( )
( )

2 2 2 2 2 2
2

2 2 2 2 2 2cos 1 .
b a a b

a b a b
ρ ρ

ϕ
ρ ρ

− +
= − =

+ +
 (2.52) 

После преобразования (2.49), с учетом (2.51) и (2.52), получим точечное 

уравнение гиперболы с текущим параметром радиуса ρ  (рис. 5.15): 

 ( ) ( )
2 2 2 2

2 2 2 2
,b aM A C B C C

a b a b
ρ ρ+ −= − + − +

+ +
 (2.53) 

где [ ]; b aρ ∈  – центральный радиус гиперболы, определяющий текущую точку 

М гиперболы при обходе первой четверти кривой. 

При изменении знака перед дробями в уравнении гиперболы (2.53) с «+» 

на «–», получим уравнение гиперболы в остальных трех четвертях. 
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2.1.2.3. Гипербола с текущим параметром угла с вершиной в фокусе 
кривой 

Задача. Определить точечное уравнение гиперболы с текущим 

параметром угла с вершиной в фокусе кривой. 

Решение. Из аналитической геометрии известно полярное уравнение 

гиперболы: 

1 1 cos
pF M

e
ρ

ϕ
= =

−
, 

где 
2bp

a
=  – фокальный параметр гиперболы (рис. 2.12); 

1ce
a

= >  – эксцентриситет кривой; 

0;  arcsin 2 arcsin ;  2b b
c c

ϕ π π   ∈ −     
  – угол с вершиной в фокусе 

гиперболы, определяющий текущую точку M правой ветви кривой. 

 
Используя полярную параметризацию плоскости, зададим точечное 

уравнение гиперболы в симплексе точек 1ABF  через параметр угла ϕ  (рис. 2.12): 

 
( ) ( )( )

( )
( )

2 2
2 2

1

2 2

1 12 2

sin arcsin

1 cos

sin .
1 cos

bb c p
b cM A F

e cb ab

b c pB F F
e b b c

ϕ

ϕ

ϕ
ϕ

 
+ − 

+ = − +
− −

++ − +
− +

 (2.54) 

Рисунок 2.12. Геометрическая схема задания гиперболы через 
определение кривой 
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После преобразования (2.54), точечное уравнение гиперболы в симплексе 

точек 1ABF  примет вид: 

 ( ) ( )
( )( ) ( ) ( )1 1 1

cos sin sin .
1 cos 1 cos

b b c bM A F B F F
a e c a a e

ϕ ϕ ϕ
ϕ ϕ
−

= − + − +
− − −

 (2.55) 

После подстановки выражения фокуса 1F  из (2.43) в (2.55), при заданном 

центре C , вершине A  гиперболы и точке В (определяющих полуоси гиперболы 

– основной прямоугольник кривой), в симплексе этих точек при 90BCA∠ = °  

(рис. 2.12), точечное уравнение гиперболы примет вид: 

 ( ) ( )
2 2

2 2 2 2

cos sin ,
cos cos

a b a bM A C B C C
a a b a a b

ϕ ϕ
ϕ ϕ

+ −= − + − +
− + − +

 (2.56) 

где 0;  arcsin 2 arcsin ;  2b b
c c

ϕ π π   ∈ −     
  – угол с вершиной в фокусе 

гиперболы, определяющий текущую точку M правой ветви кривой. 

 

2.1.3. Моделирование параболы в различных параметризациях 
Парабола, благодаря своим оптическим свойствам, занимает особое место 

в геометрическом моделировании отсеков поверхностей пространственных 

форм. Более того, параболические дуги являются эффективным инструментом 

параболической интерполяции и аппроксимации многофакторных процессов и 

явлений. Раскрыть особые возможности параболы можно благодаря 

использованию точечных алгоритмов их формообразования в плоскости общего 

положения. 

 

2.1.3.1. Моделирование параболы, как кривой одного отношения 
Рассмотрим известный алгоритм построения параболы, как кривой одного 

отношения, по двухзвенной ломаной Бернштейна 1 2 3A A A . На звеньях 1 3A A  и 2 3A A  

выберем точки 1B  и 2B  однозвенной ломаной, на которой фиксируем текущую 

точку кривой М (рис. 2.13). 
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Так как точки 1B , 2B  и М делят звенья ломаной в одном и том же 

отношении t , то искомая кривая − парабола, является кривой Безье. Система 

линейных точечных уравнений, определяющих точку М, имеет вид: 

 
1 1 3

2 3 2

1 2

,
,
,

B A t A t
B A t A t
M B t B t

= +
 = +
 = +

 (2.57) 

где 1t t= −  – дополнение параметра t  до 1. 

Исключая промежуточные точки 1B  и 2B , получим уравнение параболы: 

 2 2
1 3 22 ,M A t A tt A t= + +  (2.58) 

где [ ]0; 1t ∈  − параметр, определяющий текущую точку М кривой. 

Используя свойства точечного исчисления, это же уравнение можно 

представить в другом виде: 

( ) ( )2 2
1 3 2 3 3.M A A t A A t A= − + − +  

Полученная параболическая кривая, определенная точечным уравнением 

(2.58), является дугой обвода, проходящей через точки 1A , 2A , и имеющей 

касательные 1 3A A  и 2 3A A  в этих точках. 

 

Рисунок 2.13. Геометрическая схема определения 
параболы, как кривой одного отношения 
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2.1.3.2. Моделирование параболической дуги кривой 2-го порядка с 
несобственной точкой 

Известно, что парабола 2-го порядка однозначно определяется четырьмя 

точками, три из которых непосредственно принадлежат параболе, а четвёртая 

определяет направление ветвей параболы и является несобственной. Определим 

дугу параболы в симплексе ABC . В соответствии с геометрической схемой 

(рис. 2.14), дуга параболы будет проходить через точки ,  ,  ,  A C C B∞ . Точка C∞  

является несобственной и определяет направление ветвей параболы. 

 
Несобственную точку C∞  определим как направление прямой CCT : 

( ) .C CT B A t A= − +  

В соответствии с геометрической схемой (рис. 5.18) прямые AK  и CT C  

параллельны. Тогда треугольники ABK  и CBCT  аффинно-равны и образуют 

соответствующие соотношения: 

1 ,C C
C C

C C

T A CK C K tt t K B C
BA BK B K t t

− −= = → = → = +
−

 

где 1C Ct t= − . 

В качестве текущего параметра принимаем параметр t , который 

определяется следующим соотношением: 

( ) .TA T At t T B A t A
BA B A

−= → = → = − +
−

 

 
 

 

 

 

 

 

  

 

Рисунок 2.14. Геометрическая схема конструирования дуги 
параболы 2-го порядка 
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Согласно геометрической схеме (рис. 2.14) прямые CKT  и TN  

параллельны. Учитывая, что треугольники CAKT  и ATN  аффинно-равны, 

получим следующие соотношения: 

 .C CKT T A
NT TA

=  (2.59) 

Из соотношения (2.59) определим точку N : 

 ( )( ) .C C C

C

K T T A K T T AN T
N T T A T A

− − − −=  = +
− − −

 (2.60) 

Подставляем значения точек ,  K T  и CT  в уравнение (2.60) и после 

некоторых преобразований, получим уравнение точки N : 

( ) .C

C C C C

t t t tN A B C
t t t t
− −= + +  

Учитывая особые условие принадлежности точки N  к плоскости ABC , 

получим: 

( ) ( )( ) .C

C C

t t tN A C B C C
t t
− −= − + − +  

Аналогичным образом из подобия треугольников ABN  и BTM , получим 

следующее соотношение: 

 .TB MB
AB NB

=  (2.61) 

Подставляем значения точек ,  N T  в соотношение (2.61) и после некоторых 

преобразований, получим уравнение точки M : 

Утверждение. Дуга параболы 2-го порядка, которая определяется точками 

,  ,  ,  A C C B∞ , описывается уравнением: 

 

( ) ( )

( ) ( )( ) ( ) .

C C

C C C C

C C

C C

t t t t t t ttM A B C
t t t t

t t t t t tA C B C C
t t

− −= + + =

− −= − + − +
 (2.62) 

где ,  ,  A C B  – точки, через которые проходит дуга параболы; 

0 1t≤ ≤  – текущий параметр, который определяет дугу параболы; 
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1t t= −  – дополнение параметра t  до единицы; 

Ct  – значение параметра, который определяет несобственную точку дуги 

параболы; 

1C Ct t= −  – дополнение параметра Ct  до единицы. 

Представим уравнение (2.62) в параметрическом виде. Тогда для 

трёхмерного пространства, получим систему параметрических уравнений: 

( ) ( )( ) ( ) ,

( ) ( )( ) ( ) ,

( ) ( )( ) ( ) .

C C
M A C B C C

C C

C C
M A C B C C

C C

C C
M A C B C C

C C

t t t t t tx x x x x x
t t

t t t t t ty y y y y y
t t

t t t t t tz z z z z z
t t

 − −= − + − +

 − −= − + − +

 − −= − + − +


 

Для практического использования полученное уравнение можно 

упростить, если принять параметр 1
2Ct = . Это позволяет наиболее рационально 

определить точку C∞ . Тогда уравнение (2.62) принимает следующий вид: 

 ( ) ( ) ( ) ( )1 2 2 1 .M A C t t B C t t C= − − + − − +  (2.63) 

С учётом покоординатного расчёта для трёхмерного пространства, 

получим систему параметрических уравнений: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 2 2 1

1 2 2 1 .

1 2 2 1

M A C B C C

M A C B C C

M A C B C C

x x x t t x x t t x

y y y t t y y t t y

z z z t t z z t t z

 = − − + − − +


= − − + − − +
 = − − + − − +

 

 
2.1.4. Моделирование кривой 2-го порядка по пяти точкам 

(параметризация 1) 
Кривая 2-го порядка, в общем случае, определяется пятью точками, 

лежащими в одной плоскости (рис. 2.15). 

К трем точкам A, B и C, которые определяют плоскость кривой, добавим 

еще две: 
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( ) ( )
( ) ( )

,
.

D D

E E

D A C p B C q C

E A C p B C q C

= − + − +

= − + − +
 (2.64) 

Пять точек кривой второго порядка определим естественными 

параметрами: ( ) ( ) ( ) ( ) ( )1,  0 ;  0,  1 ;  0,  0 ;  ,  ;  ,  .D D E EA B C D p q E p q  

 
Через точки (2.64) проходит кривая 2-го порядка, которую геометрически 

определяет основная теорема для рядов и пучков второго порядка. Согласно этой 

теореме, имеем следующие точки пересечения (рис. 2.15): 

 

;  ;
;  ;
;  ;

.

B

D

E

S BE AD V SU CB
M UE VD U BE CA
U CA ED R CB ED

U RS CA

= × = ×
= × = ×
= × = ×

= ×

 (2.65) 

Определим уравнение точки S. Введем вспомогательный параметр t для 

определения прямой AD, тогда получим: 

 ( ) .N D A t A= − +  (2.66) 

После преобразования (2.66), имеем: 

 
( )( ) ( )

( ) ( )
1

1 1 .
D D

D D D D

N A C p t B C q t A

A p t Bq t C t p t q t

= − − + − + =

= − + + + − −  
 (2.67) 

     

  M 

В 

U 

R 
E 

V D 

S 

Рисунок 2.15. Геометрический алгоритм определения 
кривой второго порядка по пяти точкам 
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Применим S-теорему точечного исчисления для определения точки S в 

треугольнике ABE : 

( ) ( )

( )

1 1 1 1 1 0
1 0 1 0

0 1 0 0 1 0

11 1 0 .
1

D D D E D E

E E E E

E
D E

D

p t q t p t p q t q
p q p q

pp t p t
p

− + − + − −
=  = 

−
 − + − =  =

−

 

Окончательно, уравнение точки S имеет вид: 

 ( ) ( ) ( )1
.

1
D E

E
D

q p
S A C p B C C

p
−

= − + − +
−

 (2.68) 

Введем текущий параметр u  для определения текущей точки М кривой 

второго порядка, тогда получим точку U на прямой CA  (рис. 2.15): 

( ) .U A C u C= − +  

Определим уравнение точки V. Введем вспомогательный параметр t для 

определения прямой SU, тогда получим: 

 ( ) .N S U t U= − +  (2.69) 

После преобразования (2.69), имеем: 

 
( )( ) ( ) ( ) ( )

( )( ) ( ) ( )

1
1

1
.

1

D E
E

D

D E
E

D

q p
N A C p t ut B C t A C u C

p
q p

A C p t ut u B C t C
p

−
= − − + − + − + =

−
−

= − − + + − +
−

 (2.70) 

Применим S-теорему для определения точки V в ∆UBC : 

( )1
1

1
0 1 1 0 0 .
0 0 1

D E
E

D

E
E

q p
p t ut u t

p
up t ut u t

u p

−
− +

−
=  − + =  =

−
 

Окончательно, уравнение точки V имеет вид: 

 ( ) ( )
( )( )

1
.

1
D E

D E

q p u
V B C C

p u p
−

= − +
− −

 (2.71) 
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Определим уравнение точки М. Введем вспомогательный параметр t для 

определения прямой UE, тогда получим: 

 ( ) .N E U t U= − +  (2.72) 

После преобразования (2.72), имеем: 

 
( )( ) ( ) ( )

( )( ) ( ) .
E E

E E

N A C p t ut B C q t A C u C

A C p t ut u B C q t C

= − − + − + − + =

= − − + + − +
 (2.73) 

Применим S-теорему для определения точки М в ∆UVD : 

 

Окончательно, точечное уравнение кривой второго порядка, проходящей 

через пять точек, имеет вид: 

 
( ) ( ) ( )

( ) ( )( )

( ) ( ) ( )
( ) ( ) ( )( )

1
1

1
.

1

D D E

D E D D E D D E

E D D E

E D E D D E D D E

q p p u u
M A C u

q p p u p p q p q

q q p p u u
B C C

p u q p p u p p q p q

 − −
= − + + − + − − 

− −
+ − +

− − + − −  

 (2.74) 

Задача. Определить значения текущего параметра u, при которых кривая 

2-го порядка проходит через каждую из пяти точек. 

Решение. Из геометрического алгоритма построения кривой (рис. 2.15), 

видно: 

1. CU C≡ , тогда 0M C u≡  = . 

2. AU A≡ , тогда 1M A u≡  = . 

3. BU BE CA= ×  или V B≡ : 

( )
( )( )

1
1

1
D E

D E

q p u
p u p

−
=

− −
. 

После преобразования, получим: 

( )
( )( )

( ) ( )
( ) ( ) ( )( )

1
1

0 1 0
1

1
1

.
1

E E

D E

D E

D D

D D E

E D E D D E D D E

p t ut u q t
q p u

p u p
p q

q p p u u
t

p u q p p u p p q p q

− +
−

= →
− −

− −
→ =

− − + − −  
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( )1
.

1
E D

E D D D

p p
u

p q p q
−

=
− − +

 

4. DU CA ED= × . Определим выражение точки DU . 

Введем вспомогательный параметр t для определения прямой ЕD, тогда 

получим: 

 ( ) .N D E t E= − +  (2.75) 

После преобразования (2.75), имеем: 

 ( )( ) ( )( ) .D E E D E EN A C p t p t p B C q t q t q C= − − + + − − + +  (2.76) 

Применим S-теорему для определения точки DU  в ∆DCA : 

( )
1

1 0 1 0 0 .
0 0 1

D E E D E E
E

D E E
E D

p t p t p q t q t q
qq q t q t

q q

− + − +
=  − + =  =

−
 

Согласно (2.76), выражение точки DU  имеет вид: 

( ) ( ) .E D E
D E

E D

q p p
U A C p C

q q
− 

= − + + − 
 

Тогда выражение параметра u для прохождения кривой через точку D  

имеет вид: 

( ) ( ) .E E D E E D

E D

p q q q p p
u

q q
− − −

=
−

 

5. ;  .ER CB ED U RS CA= × = ×  Определим выражение точки R . 

Введем вспомогательный параметр t для определения прямой ЕD, тогда 

получим: 

 ( ) .N D E t E= − +  (2.77) 

После преобразования (2.77), имеем: 

( )( ) ( )( ) .D E E D E EN A C p t p t p B C q t q t q C= − − + + − − + +  

Применим S-теорему для определения точки R  в ∆EBC : 
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1
0 1 1 0 0 .
0 0 1

D E E D E E
E

D E E
E D

p t p t p q t q t q
pp t p t p t

p p

− + − +
= → − + = → =

−
 

Окончательно, выражение точки R  имеет вид: 

( ) ( ) .E D E
E

E D

p q q
R B C q C

p p
− 

= − + + − 
 

Определим выражение точки EU . Введем вспомогательный параметр t для 

определения прямой RS, тогда получим: 

 ( ) .N S R t R= − +  (2.78) 

После преобразования (2.78), имеем: 

 
( ) ( ) ( ) ( )

( )

1
1

.

D E E D E
E E

D E D

E D E
E

E D

q p p q q
N A C p t B C q t

p p p

p q q
q C

p p

 − − 
= − + − − − + − − 

− 
+ + +− 

 (2.79) 

Применим S-теорему для определения точки EU  в ∆SAC : 

( ) ( ) ( )

( ) ( ) ( )
2 2

1
0

1

1
.

2

D E E D E E D E
E E

D E D E D

D E E D E E D

E D D E D D D D E D E

q p p q q p q q
q t q

p p p p p

p p q q q p p
t

p q p p q p q p q p q

− − − 
− − + + =  − − − 

− − − −   =
− + − +

 

Согласно (2.79), выражение точки EU  имеет вид: 

( ) ( ) ( ) ( )
2 2

1
.

2
E D E E D E E D

E
E D D E D D D D E D E

p p p q q q p p
U A C C

p q p p q p q p q p q
− − − −  = − +

− + − +
 

Тогда, выражение параметра u для прохождения кривой через точку E , 

имеет вид: 

 
( ) ( ) ( )

2 2

1
.

2
E D E E D E E D

E D D E D D D D E D E

p p p q q q p p
u

p q p p q p q p q p q
− − − −  =

− + − +
 (2.80) 

Полученное точечное уравнение (2.80) кривой 2-го порядка, проходящей 

через заданные пять точек, дополняет понятие такой кривой в точечном 

исчислении. 



70 

2.1.5. Моделирование кривой 2-го порядка по пяти точкам 
(параметризация 2) 

Существует и другая параметризация дуги кривой 2-го порядка, 

проходящей через 5 точек. Для её реализации преобразуем геометрический 

алгоритм конструирования дуги 1 2 3AA A MA B  кривой 2-го порядка, приведенный 

в [3]. Точки A  и B  ‒ начало и конец дуги кривой 2-го порядка (рис. 1.1), 

1 2 3,  ,  A A A  ‒ точки, через которые проходит кривая 2-го порядка. Согласно 

теореме Паскаля, объединяем противолежащие стороны шестиугольника 

1 2 3AA A MA B  (рис. 2.16). Тогда точки P , Q  и R  образуют прямую Паскаля. 

 
Рисунок 2.16. Геометрический алгоритм моделирования дуги кривой 

2-го порядка 

Для определения дуги кривой 2-го порядка, точки 1 2 3, ,A A A  должны 

занимать особое положение относительно симплекса CAB  (рис. 2.16): 

 1 1 3 3( ) ,  ( )A A C p C A B C q C= − + = − +  (2.81) 

где 0< 1 3,p q <1. 

При этом точка 2A  должна находиться в середине треугольника 1 3CA A . Для 

выполнения этого условия определим точку 2T  на прямой 1 3A A  с помощью 

параметра 2p : 

 ( )2 3 1 2 1 1 2 2 3( ) ( ) ,T A A p A A C p p B C p q C= − + = − + − +  (2.82) 

где 2 21p p= −  – дополнение параметра 2p  до 1. 
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Далее, определим точку 2A  с помощью параметра 2q : 

 ( )2 2 2 1 2 2 2 2 3( ) ( ) ,A T C q C A C p p q B C p q q C= − + = − + − +  (2.83) 

где 0< 1 2 2 3, , ,p p q q <1. 

Принимая в качестве текущего параметра отношение APt
AC

= , получим 

следующее точечное уравнение: 

 ( ) ,P A C t C= − +  (2.84) 

где 1t t= −  – дополнение параметра t  до 1. 

Определим точку Q  как пересечение прямых 1 2A A  и BC . Точечное 

уравнение отрезка прямой 1 2A A  имеет следующий вид: 

 [ ]1 2 1 1 2 2 2 2 3( ) ( ) .Q Au A u A C p u p p q u B C p q q u C= + = − + + − +  (2.85) 

где 1u u= −  – дополнение параметра u  до 1. 

Прямые 1 2A A  и BC  пересекаются в точке Q  при условии, что площадь 

треугольника BCQ  равняется нулю. В соответствии с S − теоремой точечного 

исчисления, составим определитель 3-го порядка: 

 1 1 2 2 2 2 3

2 2

2 2 2 2

0 0 1
0 1 1 0;

1
1 ; .

1 1

p u p p q u p q q u
p qu u

p q p q

=
+

−= =
− −

 (2.86) 

Подставив значение параметра u  в уравнение (2.85), получим: 

 2 2 3

2 2

( ) .
1
p q qQ B C C

p q
= − +

−
 (2.87) 

Аналогичным образом определим точку R  как пересечение прямых AB  и 

PQ . 

 ( ) 2 2 3

2 2

( ) .
1
p q qR Pu Qu A C tu B C u C

p q
= + = − + − +

−
 (2.88) 

Согласно S − теоремы точечного исчисления, имеем: 
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( )
( )

( )
( )

2 2 3

2 2

2 2 2 2 3 2 2

2 2 3 2 2 2 2 3 2 2

1 0 1
0 1 1 0;

1
1

1 1
; .

1 1

p q qtu u
p q

t p q p q q p q
u u

p q q t p q p q q t p q

=

−

− − −
= =

− − − −

 (2.89) 

Подставив значение параметра u  в уравнение (2.88), получим: 

 ( ) ( )
( ) ( )

2 2 3 2 2 2 2 3

2 2 3 2 2 2 2 3 2 2

1
( ) .

1 1
p q q p q p q qR A C t B C t C

p q q t p q p q q t p q
− −

= − + − +
− − − −

 (2.90) 

Определим точку M  как пересечение прямых 2RA  и 3PA : 

 
( ) ( )

( )

( )

2 2 3 2 2
2 1 2 2

2 2 3 2 2

2 2 3
2 2 3

2 2 3 2 2

1
1

( ) .
1

p q q p q
M Ru A u A C tu p p q u

p q q t p q

p q qB C tu p q q u C
p q q t p q

 − −
= + = − + + − − 

 
+ − + + − − 

 (2.91) 

Согласно S − теоремы точечного исчисления, имеем: 

 

( )
( ) ( )

( )
( ) ( ) ( )( )

( ) ( )( )
( )

2 2 3 2 2 2 2 3
1 2 2 2 2 3

2 2 3 2 2 2 2 3 2 2

3

2

2 2 2 2 3 2 2 2 2 1 2 2 2 2 3 2 2

2 2 3 2 2 2 2 2

2 2 2 2 3 2 2 2 2

1
1

1 1
0 1 0;

0 1

1
;

1 1

1
1

p q q p q p q qtu p p q u tu p q q u
p q q t p q p q q t p q

t
q

tt q
u

p q t p q q p q t p q t p p q p q q t p q

p q q t p q t p q t p
u

p q t p q q p q t p q t p

− −
+ +

− − − −
=

−
=
 + − −  − + − − 

 − −  − + =
 + − −  − +  ( ) ( )2 2 2 3 2 2

.
1p q q t p q − −  

 (2.92) 

Подставив значение параметра u  в уравнение (2.91), получим: 
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( )

( )( ) ( )( )
( )

( )
( ) ( )

( )
( )

( ) ( )

2 2 3 2 2 2 2 2

1 2 2 2

2 2 2 2 3 2 2

2 2 2 2 2 3 2 2

2
2 2 2 3 2

2 2 2 2 3 2 2

2 2 2 2 2 3 2 2

1

1
1

1

( ) .
1

1

p q q p q t p q t p t

p p q q tt
M A C

p q t p q q p q t

p q t p p q q t p q

p p q q t t p
B C C

p q t p q q p q t

p q t p p q q t p q

 − − − + +
 
 + − = − +

 + − − −   
 − + − −   

−
+ − +

 + − − −   
 − + − −   

 (2.93) 

Уравнение имеет достаточно громоздкий вид, поскольку кроме точек 

симплекса содержит в себе ещё 3 точки, каждая из которых определяется своими 

параметрами. В случае конкретного расположения точек, параметрические 

уравнения такой кривой будут иметь более компактный вид (рис. 2.17). 

 
Исследуем более детально полученное уравнение (2.83). Для этого 

рассмотрим отдельные случаи конструирования дуги 1 2 3AA A MA B  кривой 2-го 

порядка, при совпадении некоторых точек, а именно: 1A А≡ , 3A В≡ , 1A А≡  и 

3A В≡ . Рассмотрим первый случай, когда 1A А≡  (рис. 2.18). 

При этом получим уравнение кривой 2-го порядка, которая проходит через 

4 точки и имеет касательную в точке A . Согласно (2.81), если точка 1A А≡ , то 

параметр 1 1p = . Подставим его в уравнение (2.93) и после некоторых 

преобразований получим уравнение дуги кривой 2-го порядка: 

( )

( )
2

2

4 9 0,8
70 75 44,2

8 1
14 15 8,84

t t
x

t t
t t

y
t t

+
= − +


− − = − +

Рисунок 2.17. Пример моделирования дуги кривой 2-го порядка, 
проходящей через 5 наперёд заданных точек 
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( ) ( )( ) ( )( ) ( )
( )

( ) ( )
( )

( )
( ) ( )

2 2 3 2 2 2 2 2 2 2 2

2 2 2 2 3 2 2

2 2 2 2 2 3 2 2

2
2 2 2 3 2

2 2 2 2 3 2 2

2 2 2 2 2 3 2 2

1 1
1

1

( ) .
1

1

p q q p q t p q t p t p q q tt
M A C

p q t p q q p q t

p q t p p q q t p q

p p q q t t p
B C C

p q t p q q p q t

p q t p p q q t p q

− − − + + −
= − +

 + − − −   
 − + − −   

−
+ − +

 + − − −   
 − + − −   

 (2.94) 

 
Второй случай, когда 3A В≡  (рис. 2.19). При этом получим уравнение 

кривой 2-го порядка, которая проходит через 4 точки и имеет касательную в 

точке B . 

Учитывая, что 3A В≡ , из уравнения (2.81) определим параметр 3q =1 и 

после некоторых преобразований получим уравнение дуги кривой 2-го порядка: 

 
( ) ( ) ( ) ( )

[ ] ( )( )
( )

[ ] ( )( )

2 2 2 2 1 2 2 2

2 2 2 2 2 2 2 2 2

2
2 2 2 2

2 2 2 2 2 2 2 2 2

1 1
1

( ) .
1

q t p q t p t p p q q tt
M A C

p q t q t p q t p p q t tq

p p q t t p
B C C

p q t q t p q t p p q t tq

− − + + −  = − + +
+ − − + −

−
+ − +

+ − − + −

 (2.95) 

Рисунок 2.18. Геометрический алгоритм конструирования 
дуги кривой 2-го порядка при совпадении точек  
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Третий случай, когда 1A А≡  и 3A В≡  (рис. 2.20). В этом случае получим 

дугу обвода первого порядка гладкости, которая проходит через точку 3 точки 

и имеет касательные в точках A  и B . 

 
Из уравнения (2.81) определим значение параметров 1p =1, 3q =1 и после 

некоторых преобразований получим уравнение дуги кривой 2-го порядка: 

 
( ) ( ) ( )( ) ( )

( ) ( )( )
( )

( ) ( )( )

2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2

2
2 2 2 2

2 2 2 2 2 2 2 2 2

1 1
1

( ) .
1

q t p q t p t p q q tt
M A C

p q t q t p q t p p q t tq

p p q t t p
B C C

p q t q t p q t p p q t tq

− − + + −
= − + +

+ − − + −

−
+ − +

+ − − + −

 (2.96) 

Рисунок 2.19. Геометрический алгоритм конструирования 
дуги кривой 2-го порядка при совпадении точек  

Рисунок 2.20. Геометрический алгоритм конструирования дуги 
кривой 2-го порядка при совпадении точек  и  
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2.1.6. Моделирование кривых 2-го порядка с помощью инженерного 
дискриминанта 

Из проективной геометрии [11] известно, что кривая 2-го порядка (к2п) 

однозначно определяется 5 точками, 5 касательными или их комбинациями. 

Рассмотрим геометрическую схему конструирования дуги к2п (рис. 2.21), при 

которой она определяется 3-мя точками (А, К и В) и 2-мя касательными (АС и 

ВС). В симплексе  построим медиану . Точка K определяется с помощью 

параметра k, который представляет собой отношение на медиане (более 

известный как инженерный дискриминант), следующим точечным уравнением: 

. Для определения текущей точки  дуги к2п построим 

произвольную прямую, выходящую из точки  (в нашем случае – отрезок ). 

На пересечении этой прямой с отрезками  и  получим промежуточные 

точки  и . Тогда текущую точку  определим пересечением отрезков 

прямых  и . 

 

Определим текущий параметр  соотношением: . 

Используя правила преобразования простого отношения трех точек прямой [3], 

получим уравнения точек ,  и : 

ABC 1CT

( )1K T C k C= − + M

C CT

AK BK

P Q M

AQ BP

u ATu TBA
AB

= = −

N T K

Рисунок 2.21. Геометрическая схема определения кривой 2-го 
порядка с помощью инженерного дискриминанта 
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где ,  − дополнение соответствующего параметра до единицы. 

Определим точку  как пересечение отрезков прямых  и . Для 

этого на прямой  зададим текущую точку в симплексе  с помощью 

параметра : 

 

Далее определим площадь переменного треугольника . Получим 

искомое пересечение отрезков прямых  и  при условии, что площадь 

треугольника  будет равна нулю (т.е. точка  двигаясь по прямой  

достигнет прямой ). В соответствии с теоремой точечного исчисления 

составим определитель из параметров точек треугольника  и приравняем 

его нулю: 

 

Из полученного определителя находим такое значение параметра , при 

котором площадь треугольника  будет равна нулю, и подставляем его в 

уравнение точки . После некоторых преобразований получим: 

 

Аналогичным образом, определим текущую точку дуги к2п , как 

пересечение прямых  и . Для этого на прямой  определим текущую 

точку  с помощью параметра : 

 

,
1 2 1 2

,

,
2 2

u uN A B
u u

T Au Bu
k kK A B Ck

= −
− −
= +

= + +

1u u= − 1k k= −

P AK CT

CT ABC

t

.P Ct Tt Aut But Ct= + = + +

APK

AK CT

APK P CT

AK S −

APK

1 0 0
0.

2 2

ut ut t
k k k

=

t

APK

P

2 .
2 2 2

uk uk ukP A B C
uk k uk k uk k

= + +
+ + +

M

KN BP KN

M t

2 2 2 2 .
2 4 2 4

kt ukt ut kt ukt utM Kt Nt A B Ckt
u u

− + − −= + = + +
− −
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В соответствии с теоремой точечного исчисления составим 

определитель из параметров точек треугольника  и приравняем его нулю: 

 

Из этого выражения определяем такое значение параметра , при котором 

площадь треугольника  будет равна нулю, и подставляем его в уравнение 

точки . После некоторых преобразований получим итоговое уравнение дуги 

к2п, полученное на основе геометрических построений, схема которых 

представлена на рисунке 2.21: 

 ( )
( )

( )
( )

2 2

2 2 .
1 2 2 1 2 2

ku kuM A C B C C
k u uu k u uu

= − + − +
− + − +

 (2.97) 

В соответствии с [14], при  получаем дугу параболы, при  

− дугу гиперболы, а при  – дугу эллипса. 

Переходя от точечного уравнения к системе параметрических уравнений, 

для трёхмерного пространства, получим: 

 
 

2.1.7. Кривая 2-го порядка в параметризации Чевы 
Кривую 2-го порядка можно определить, как ряд точек пересечения пар 

проективно соответственных лучей двух пучков прямых первого порядка. Тогда 

для задания кривой 2-го порядка достаточно задать два пучка прямых и 

S −

BMP

0 1 0

2 2 2 2 0.
2 4 2 4

2
2 2 2

kt ukt ut kt ukt ut kt
u u

uk uk uk
uk k uk k uk k

− + − − =
− −

+ + +

t

BMP

M

0,5k = 0 0,5k< <

0,5 1k< <

( ) ( )

( ) ( )

( ) ( )

2 2

2 2

2 2

2 2

2 2

2 2

,
(1 2 ) 2 (1 2 ) 2

,
(1 2 ) 2 (1 2 ) 2

.
(1 2 ) 2 (1 2 ) 2

M A C B C C

M A C B C C

M A C B C C

ku kux x x x x x
k u uu k u uu

ku kuy y y y y y
k u uu k u uu

ku kuz z z z z z
k u uu k u uu


= − + − + − + − +


= − + − + − + − +


= − + − +

− + − +
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установить между ними проективное соответствие, указав три пары 

соответственных лучей. Для описания кривой 2-го порядка в ТИ удобнее 

установить проективное соответствие между двумя пучками прямых следующим 

образом (рис. 2.22). 

 
Принимаем точку 1A  за центр первого пучка, а точку 2А  – за центр второго. 

Лучу 21АА  первого пучка поставим в соответствие луч, касательный в 2А  к 

строящемуся ряду 2-го порядка. Этим уже определяется плоскость кривой 2-го 

порядка. В этой плоскости через точку 1А  проведём луч, касательный к 

строящемуся ряду как соответственный лучу 12АА  второго пучка. Эти 

касательные лучи пересекутся в точке 3А , чем и определяется симплекс 321 ААА  

плоскости строящейся кривой. 

Заданием произвольной точки K  в плоскости 321 ААА  строящейся кривой 

завершается формирование двух проективных пучков: 

),,(),,( 212322131211 KААААААKАААААА ∧ . 

Точка М  кривой 2-го порядка определяется как точка пересечения 

четвёртой пары проективно-соответственных лучей 11МА  и 22МА . 

Проведём луч 11МА , и на прямой 32АА  определится сложное отношение 

четырёх точек 1132 МKАА . На прямой 13АА  также определится сложное 

отношение четырёх точек 2213 МKАА . Если точка М принадлежит кривой 2-го 

порядка, то эти сложные отношения равны: 

Рисунок 2.22. Геометрическая схема построения дуги кривой 
2-го порядка 
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 2 3 1 1 3 1 2 2.А А K М А АK М=  (2.98) 

Известно, что сложное отношение не изменяется от перестановки обеих 

пар составляющих его точек и от одновременной перестановки букв внутри 

каждой пары. Перестановка букв внутри одной пары изменяет сложное 

отношение на обратное. 

Полученное соотношение можем записать в виде: 

1 1 2 3 2 2 3 1M K А А M K А А= . 

Если ввести проективный репер Z≡A3, X ≡A1, Y ≡A2, E≡K, то в проективных 

координатах полученное соотношение приобретает вид: 

1 1 2 2
2 2

1 1M E ZY M E XZ Y
M E ZX X

= = → = , 

а это и есть уравнение кривой 2-го порядка в проективных координатах. 

Для реализации алгоритма построения кривой 2-го порядка на основе 

аппарата точечного исчисления определим аффинный параметр кривой в 

зависимости от положения забрасываемой точки K (пятый элемент – 

предыдущие четыре элемента – это точки A1 и A2 – центры проективных пучков, 

и касательные в этих точках). 

С учетом ориентации отрезков обозначим: 

13223 KАА=ν , 21331 KАА=ν , 32112 KАА=ν , 

13223 MAA=λ , 21331 MAA=λ , 32112 MAA=λ . 

Из (2.98) имеем: 

 2 3 1 3 1 2 23 31

2 3 1 3 1 2 23 31

.A A K A A K
A A M A A M

ν ν
λ λ

= → =  (2.99) 

Мы видим, что положение точки 2M  на прямой 13AA  зависит от 

положения точки 1M  на прямой 32 AA  и от постоянного отношения k , при этом: 

 31

23

.k ν
ν

=  (2.100) 
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Обратим внимание, что параметр k  является параметром пучка кривых 2-

го порядка, определяемого заданием двух касательных с точками прикосновения 

на них. 

Из (2.99) с учетом (2.100) получим: 

 31 23.kλ λ=  (2.101) 

На основании теоремы Чевы имеем 1123123 =λλλ , откуда, с учетом (2.101), 

получим:  

2
23

12
1
λ

λ
k

= . 

Текущая точка M  плоскости 321 AAA  определяется уравнением вида: 

rAqApАM 321 ++= , 

где 1=++ rqp ,  

При этом 11MMАp −= , 22MMAq −= , 33MMAr −= . 

Если точка M  определяется точками 1M  и 2M , то на основании теоремы 

Менелая получим: 

23 31

23 23 31

23 23 31

23

23 23 31

,
1

1 ,
1

.
1

p

q

r

λ λ
λ λ λ

λ λ λ
λ

λ λ λ

=
+ +

=
+ +

=
+ +

 

Задание точки в параметризации по условию Чевы примет вид: 

 23 31 1 2 23 3

23 23 31

.
1

A A AM λ λ λ
λ λ λ

+ +=
+ +

 (2.102) 

С учётом (2.101) из (2.102) получим точечное уравнение кривой 2-го 

порядка: 

 ( ) ( )2
1 3 23 2 3

32
23 23

.
1

A A k A A
M A

k
λ

λ λ
− + −

= +
+ +

 (2.103) 
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Подставляя в (2.103) значение 
t

t
−

=
123λ , где t  – параметр, определяемый 

из отношения 231 AAMt −= , получим: 

 ( ) ( )
2 2

1 3 2 3 3
(1 ) .

1 (1 ) 1 (1 )
kt tM A A A A A

t kt t kt
−= − + − +

− − − −
 (2.104) 

На практике представляет интерес определение текущей точки M  кривой 

2-го порядка по методу инженерного дискриминанта. В этом случае точка 3M  на 

прямой 21AA  определяется параметром 3t , а точка M  на прямой 33MA  

определена параметром r . 

( ) 3231 1 tAtAM +−= , 

( )3 31M M r A r= − + . 

Откуда: 

 ( )( )( )1 3 2 3 31 1 ,M A t A t r A r= − + − +  (2.105) 

где ( )
( )

2

3 22

1
1
t

t
kt t

−
=

+ −
 и ( )

( )
1

1 1
t t

r
t kt

−
=

− −
. 

Отметим, что мы имеем возможность определить не только положение 

точки M , но и построить касательную в каждой текущей точке. 

На основании теоремы Паскаля для треугольника, вписанного в кривую 2-

го порядка, определяем, что касательная должна пройти через точку 3
~M  на 

стороне 21AA , (рис. 5.21). Но точка 3
~M  определяется как четвёртая 

гармоническая к точкам 1 2,  A A  и 3M  на основании свойств полного 

четырёхугольника, откуда 33
~ λλ −= . 

Анализируя уравнение (2.104), отметим, что бесконечно удалённые точки 

кривой 2-го порядка мы получим при равенстве нулю знаменателя этого 

уравнения. 

Для этого необходимо определить корни квадратного уравнения: 

 2 1 0.kt t− + =  (2.106) 
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В нашем случае бесконечно удалённую точку параболы получим при k

=0,25, и t =2. При этом из (2.105) 3t =0,5. Этому значению 3t  отвечает и второе 

значение 3t =2/3, при котором r =0,5, то есть посредине медианы 33MA . Эту 

точку обычно задают при построении обвода из дуг парабол по методу 

инженерного дискриминанта. 

Из анализа уравнения (2.106) следует, что гиперболы будут иметь место 

при k  < 0,25, при k  > 0,25 будут эллипсы. 

 

2.1.8. Параметризации окружности в точечном исчислении 
Окружность, будучи частным случаем эллипса, может быть получена на 

основе его параметризаций, описанных в разделе 2.1.1 текущей монографии, при 

равных значениях длин полуосей эллипса. Вместе с тем, существуют и другие 

параметризации окружности в точечном исчислении, которые могут найти своё 

место в инженерной практике. 

 

2.1.8.1. Параметризация окружности с помощью инженерного 
дискриминанта 

Дуга окружности может быть получена из параметризации кривой 2-го 

порядка с помощью инженерного дискриминанта k , представленной в разделе 

2.1.6, точечное уравнение (2.97). 

Окружность однозначно определяется тремя точками A , B  и K  

(рис. 2.23), зная координаты которых можно определить радиус окружности 

1O A r= , длину хорды AB c=  и высоту сегмента OK h= . 

Определим такое значение инженерного дискриминанта k , при котором 

кривая 2-го порядка станет окружностью. Для этого ипользуем подобие 

прямоугольных треугольников 1ACO  и ACO : 

 
2

2
1 2 .
2

KC hk
OC c

= = +   (2.107) 
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Рисунок 2.23. Геометрическая схема определения значения инженерного 

дискриминанта для дуги окружности 
 

Как видно из соотношения (2.107) значение k  зависит от длины хорды и 

высоты сегмента и однозначно определяется координатами исходных точек, 

через которые проходит искомая дуга кривой 2-го порядка. 

 

2.1.8.2. Параметризация окружности с помощью углового параметра 
(вариант 1) 

Также окружность может быть определена, геометрическое место точек 

(ГМТ), из которых отрезок CA  виден под заданным углом AMC δ∠ =  (рис. 2.24). 

 
Запишем уравнение плоскости в симплексе ABC : 

 ( ) ( ) .M A C p B C q C= − + − +  (2.108) 

Тогда задача сводится к определению функций p  и q , которые являются 

отношениями соответствующих ориентированных площадей. 

 ,   .BCM CAM

ABC ABC

S Sp q
S S

= =  (2.109) 

Рисунок 2.24. Угловая параметризация окружности 
 

 

 

 

 

a 

b 
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Определим двойную площадь треугольника ABC : 

 sin sin .ABCS BC CA abγ γ= ⋅ ⋅ =  (2.110) 

Выбираем в качестве текущего параметра угол ϕ . Определим отрезок MC  

из треугольника CAM  с помощью теоремы синусов: 

 ( ) ( ) ( )sin sin sin
.

sin sin sin
bMC MAC MC

CA
π ϕ δ δ ϕ δ ϕ

δ δ δ
− − + +

= = =  =  (2.111) 

Определим двойную площадь треугольника BCM : 

 ( ) ( ) ( )sin sin
sin .

sinBCM
ab

S BC MC
δ ϕ γ ϕ

γ ϕ
δ

+ −
= ⋅ ⋅ − =  (2.112) 

Аналогичным образом определим двойную площадь треугольника CAM: 

 ( )2 sin sin
sin .

sinCAM
b

S CA MC
δ ϕ ϕ

ϕ
δ

+
= ⋅ ⋅ =  (2.113) 

Подставим выражения (2.110), (2.112) и (2.113) в (2.109): 

 

( ) ( )

( )

sin sin
,

sin sin
sin sin

.
sin sin

p

b
q

a

δ ϕ γ ϕ
δ γ

δ ϕ ϕ
δ γ

+ −
=

+
=

 (2.114) 

Окончательное уравнение геометрического места точек, из которых 

отрезок CA  виден под заданным углом AMC δ∠ =  имеет следующий вид: 

 ( ) ( ) ( ) ( ) ( )sin sin sin sin
,

sin sin sin sin
b

M A C B C C
a

δ ϕ γ ϕ δ ϕ ϕ
δ γ δ γ

+ − +
= − + − +  (2.115) 

где параметр 0 ϕ π≤ ≤ . 

Если параметр ϕ  изменяется от нуля до ( )π δ− , то получим не всю 

окружность, а только дугу CMA , то есть часть окружности, которая расположена 

выше прямой CA . Если параметр ϕ  изменяется от ( )π δ−  до π , то получим 

часть окружности, которая расположена ниже прямой CA . При этом если угол 

δ  кратен 
2
π , то обе окружности совпадают. А если угол δ  кратен π , то задача 

не имеет решения (треугольник AMC  вырождается в прямую). 
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Для визуализации результатов были приняты следующие исходные 

данные: ( )0;0A , ( )0,5;1B , ( )1;0C  и 
3
πδ = . Результат приведен на рисунке 2.25. 

 
Следует отметить, что при δ β= , получим уравнение окружности 

описанной вокруг треугольника ABC , с углом ϕ  в качестве параметра. Т.е. 

уравнение (2.115) можно представить, как точечное уравнение окружности, 

проходящей через три любые наперёд заданные точки A , B  и C  (рис. 2.26): 

 ( ) ( ) ( ) ( ) ( )sin sin sin sin
,

sin sin sin sin
b

M A C B C C
a

β ϕ γ ϕ β ϕ ϕ
β γ β γ

+ − +
= − + − +  (2.116) 

где ( )0 ϕ π β≤ ≤ − . 

 
Рисунок 2.26. Визуализация дуги окружности, проходящей через 3 точки 

 

Особенностью полученного уравнения является то, что при значении 

текущего параметра 0ϕ =  получим начальную точку дуги окружности A , а при 

ϕ π β= −  − конечную точку B . При этом координаты исходных точек A , B  и C  

могут быть совершенно любыми, как фиксированными, так и переменными, что 

Рисунок 2.25. Визуализация ГМТ, из которых 
отрезок виден под заданным углом 



87 

позволяет использовать полученную дугу как в виде направляющей, так и в виде 

образующей при конструировании геометрических объектов. 

 

2.1.8.3. Параметризация окружности с помощью углового параметра 
(вариант 2) 

В симплексе ACB  определить точечное уравнение окружности с радиусом 

R CM=  и центром в точке C  (рис. 2.27). 

 
На прямой AC  выбираем произвольно точку T . Затем, в симплексе ACB , 

строим прямую TM  параллельную прямой CB . Тогда ACB ATM γ∠ = ∠ = , а 

CTM π γ∠ = − . 

Выбираем текущим параметром угол ϕ . Для параметризации окружности 

используем точечное уравнение плоскости (2.108). Определим p  и q  исходя из 

их геометрического смысла, как отношение площадей ориентированных 

треугольников: 

 

( )sin
.

sin
sin .
sin

MCB

ACB

ACM

ACB

RSp
S b

S Rq
S a

γ ϕ
γ
ϕ
γ

−
= =

= =
 (2.117) 

Тогда искомое точечное уравнение окружности принимает следующий 

вид: 

 ( ) ( ) ( )sin sin .
sin sin

R RM A C B C C
b a

γ ϕ ϕ
γ γ
−

= − + − +  (2.118) 

 

 

 

 

 

 

 
 

 

Рисунок 2.27. Геометрическая схема определения окружности 
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2.2. Конструирование кривых символьным методом 
В диссертации Балюбы И.Г. [1], при исследовании конструирования 

кривых с помощью одной линейки был сформулирован общий метод 

конструирования кривых символьным методом на основе систем троек. 

Используя этот метод конструирования проективных кривых, было получено два 

существенно разных алгоритма из семы прямых. Один из них – это алгоритм 

построения кривой второго порядка (алгоритм Паскаля), второй алгоритм в 

работе [1] остался не исследованным. Его геометрический алгоритм вызывает 

определённый интерес, поэтому рассмотрим его более подробно. 

При демонстрации метода символьного конструирования плоских кривых 

с помощью троек точек в работе [1] было доказано утверждение о том, что 

минимальное количество прямых алгоритма построения кривых из проективной 

геометрии равняется семы. При этом было получено два алгоритма, которые 

определяют кривую с помощью семи прямых, но имеют две существенно разные 

конфигурации систем троек: 

3 51 2 4

2 3 4 5 1

A AA A A M A
A A A A M A B

B CA C CB A
 

3 51 2 4

2 5 1 3 4

A AA A A M M
A B A A A A A
B C A C CA B

. 

 
 

а) б) 

Рисунок 2.28. Геометрические алгоритмы построения кривой на основе 
системы троек: а) кривая с прямой Паскаля; б) кривая без прямой Паскаля 

Первая из них определяет известный из проективной геометрии алгоритм 

построения кривой второго порядка (рис. 2.28а). Систему можно трактовать как 

шестисторонник 1 2 3 4 5 1A A A A A MA , который пересекается прямой Паскаля – ACB . 

 

 

 

 

 

 

  
 

  

 

 

 

 

 

 

 



89 

Для неё, согласно О-теоремы точечного исчисления [3], имеем произведение 

шести простых отношений трех точек прямой: 

1 2 2 3 3 4 4 5 5 1 1A A A A A B A A C A A A A MB MAC⋅ ⋅ ⋅ ⋅ ⋅ = . 

Эта известная система достаточно исследована и многократно практически 

использована. 

Вторая система троек, построенная согласно предложенной [1] методике 

(рис. 2.28б), тоже имеет право на существование, но неизвестно, какую кривую 

она определяет. Нужны дальнейшие исследования, которыми мы будем 

заниматься в данном параграфе. Во-первых, в алгоритме нет тройки только с 

параметрическими точками (отсутствующая прямая Паскаля). Откуда вытекает, 

что для этой кривой произведение соответствующих простых отношений трёх 

точек прямой не будет равняться единице. Как в первом, так и во втором 

алгоритме параметрическая точка A  однозначно определена заданными 

точками: 

1 2 4 5A A A A A= ∩ , 3 2 4 5A A A A A= ∩ . 

В алгоритме (рис. 2.28а) есть фиксированная точка A , а в алгоритме 

(рис. 2.28б) есть фиксированный треугольник 1 5A A A  (выделенный сплошной 

основной линией). Определим точечное уравнение кривой, принимая вершины 

этого треугольника как вершины симплекса с аффинными координатами 

1 5(1,0),   (0,1),   (0,0)A A A . Другие заданные точки определим точечными 

соотношениями:  

2 1 2 5 2( ) ( ) ;A A A p A A q A= − + − +  

3 1 3 5 3 ( ) ( )A A A p A A q A= − + − + ; 

4 5 4( )A A A q A= − + . 

Поскольку прямая 2 3A A  проходит через точку A , то параметры 2 2 3 3, , ,p q p q  

отвечают соотношению: 

2 2

3 3 2 3 2 3

1
1 0

0 0 1

p q
p q p q q p= → = . 
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В качестве текущего параметра определения кривой принимаем 

отношение 1

1 5

ACt
A A

= , откуда имеем: 1 5C A t A t= + . 

Точка 1 2B AA A C= ∩ , а 1N Au Au= + . Используя S -теорему точечного 

исчисления, имеем:  

( )2 2 2 2
2 2 2 2

2 2

0
1

1 0 ,  .
0

u u
p q t p t q tp q p q u u
t q t q

t t

− − −− − =  = =
− −

 

Откуда находим: ( )2 22 2
1 5

2 2

1 p q tp t q tB A A
t q t q

− −−= +
− −

. 

Далее, учитывая, что 3 4M BA CA= ∩ , аналогично находим: 

( ) ( )4 4 1 5 4 4 4

4 4 4 2

2 2 2 2

3 3 3 3

(1 ).

1
(1 ) 0 0 ,

1

M C A u A A tu A tu q u q A q u

tu tu q u q q u
at bt cp t q t p q t u

dt e
p q p q

= − + = + − + + − −

− + − −
+ +− − − =  =

+
− −

 

где 3 3 1;a p q= + −  

2 3 4 2 4 2 2 3 2 3 4 2 3 4 2 3 4 2 3 4 2 3

3 2 4 3 2 4 2 4 2 3

2 4 2 3 2 4 2 3 3 2 3 2 3 3 4

2 3 4 2 3 4 2

1 ;
;

;
.

b p q q p q q q p q q q p p q q p q p q q q q
c p q q q q q q q q q
d p q p q q q q q p p p q p p q
e q q q q p q q

= − − + + − − − − − −
= + − +
= − + − + − − −
= − +

 

Подставляя значение u , получим уравнение искомой кривой: 

( )
2 2 2

1 5 4 4 41 .at bt c at bt c at bt cM A t A t q q A q
dt e dt e dt e

   + + + + + += + − + + − −   + + +   
 

Из точечного уравнения делаем вывод, что алгоритм определяет кривую 

3-го порядка. Поскольку коэффициенты при параметре t  определяются точками 

1 2 3 4 5,  ,  ,  ,  A A A A A , которые, с помощью специальных правил, формируют систему 

троек, то кривая проходит через эти пять точек. Знаменатель в точечном 

уравнении линейный относительно параметра t , который свидетельствует о 

наличии у этой кривой третьего порядка одной несобственной точки. Исходя из 
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этого относим кривую к параболическому типу классификации кривых третьего 

порядка И. Ньютона [30]. 

 

2.3. Моделирование дуги обвода на основе избыточной параметризации 
плоскости 

В качестве примера рассмотрим избыточную параметризацию плоскости 

симплекса CAB  (рис. 2.29). 

 
Рисунок 2.29. Геометрическая схема избыточной параметризации плоского 

симплекса CAB  

 
Текущие точки ( ) ,  ( )P A C u C Q B C v C= − + = − + P Au Cu= +  и 

Q Cv Bv= +  определяются в симплексе CAB  с помощью параметров u  и v , где 

1u u= − , 1v v= − , 0 1u≤ ≤ , 0 1v≤ ≤ . Уравнения точек P  и Q  сгруппированы по 

почкам симплекса CAB . 

Перегруппируем их по параметрам u  и v . Если в симплексе CAB  принять 

за начальную точку C , то получим: 

( ) ,  ( )P A C u C Q B C v C= − + = − + . 

Определим отрезок AQ  с помощью параметра λ , формируя в 

соответствии с описанной выше методикой подвижный треугольник BPK  с 

переменной площадью: 

 ( ) ( ) ( ) ,K Q A A A C B C v Cλ λ λ= − + = − + − +  (2.119) 

где 1λ λ= −  – дополнение параметра λ  до 1. 

В соответствии с S − теоремой точечного исчисления получим: 
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1 1
0 1 0 .

1
0 1 1

v
uu
vu

λ λ
λ

−
=  =

−
 

Подставляя полученное выражение параметра λ  в точечное уравнение 

(2.119), получим: 

 ( ) ( ) .
1 1

uv uvK A C B C C
vu vu

= − + − +
− −

 (2.120) 

Полученное точечное уравнение за счёт избыточной параметризации 

является множеством взаимосвязанных геометрических многообразий. В 

частности, для моделирования кривых, как однопараметрического множества 

точек, вместо параметров u  и v  можно использовать любые функции от 

параметра t , непрерывные и дифференцируемые на интервале от 0 до 1: 

( ) ( ),    .u f t v tϕ= =  

Особенностью точечного уравнения (2.120) является то, что при значении 

параметров 0u v= =  кривая проходит через точку A , а при 1u v= =  – через точку 

B . Если выполнять это условие при выборе функций от параметра t , то исходя 

из геометрического алгоритма (рис. 2.29) такое множество кривых будет 

являться дугами обвода, проходящими через точки A  и B . Например, если точки 

P  и Q  будут согласовано перемещаться по сторонам симплекса, то точка K  

определит дугу обвода AB , геометрический алгоритм построения которой 

известен из курса инженерной графики (лекальные кривые). Принимая u v t= = , 

получим точечное уравнение дуги обвода: 

 ( ) ( )
2 2

2 2 ,
1 1

t tK A C B C C
t t t t

= − + − +
− + − +

 (2.121) 

где 0 1t≤ ≤ . 

Если согласовать движение точек P  и Q  с помощью квадратичной 

функции 2u v t= = , то получим другое точечное уравнение дуги обвода: 

 ( ) ( )
( ) ( ) ( )

22 4

2 2 2 2

1
.

1 1 1 1
t tK A C B C C

t t t t
−

= − + − +
− − − −

 (2.122) 
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Кривые, построенные по точечным уравнениям (2.121) и (2.122), являются 

полностью идентичными, хотя и описываются разными точечными и, 

соответственно, параметрическими уравнениями. Разница заключается в 

скорости движения текущей точки, которая движется по одной и той же 

траектории и своим движением заполняет пространство формируя кривую 

линию. 

Выполнив покоординатный расчёт точечного уравнения (2.121), получим 

систему однотипных параметрических уравнений: 

( ) ( )

( ) ( )

2 2

2 2

2 2

2 2

,
1 1

.
1 1

K A C B C C

K A C B C C

t tx x x x x x
t t t t

t ty y y y y y
t t t t


= − + − + − + − +


 = − + − + − + − +

 

Следует отметить, что полученная кривая является плоской и, 

соответственно, может быть определена в плоской декартовой системе 

координат Oxy . Вместе с тем сама плоскость в общем случае может находиться 

в 3-мерном или многомерном пространстве. Чтобы определить кривую в 

многомерном пространстве достаточно выполнить покоординатный расчёт для 

необходимого количества координат (проекций на оси многомерной глобальной 

системы координат) и ввести необходимые координаты точек симплекса CAB . 

При этом уравнения будут аналогичными приведенным в полученной системе 

параметрических уравнений за исключением соответствующих координат точек 

симплекса. 

 

2.4. Замена параметра в уравнении плоской кривой 
Традиционно в точечном исчислении для параметризации кривых 

используется простое отношение трёх точек прямой, реже – угловой параметр. 

Возможны и другие параметризации плоских кривых, включая угловые и 

радиальные. Вместе с тем, иногда возникает необходимость перейти от одной 

параметризации кривой к другой, выполнив тем самым перепараметризацию. 
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2.4.1. Угловая параметризация кривой одного отношения 
Рассмотрим пример замены параметра простого отношения трёх точек 

прямой на угловой параметр. Пусть задана кривая одного отношения 

AP CQ PM t
AC CB PQ

= = = . Необходимо определить точечное уравнение этой кривой с 

помощью параметра MCA ϕ∠ =  (рис. 2.30). 

 
В разделе 2.1.3.1 данной монографии уже был рассмотрен подобный 

геометрический алгоритм и показано, что кривая, описанная с помощью 

отношений AP CQ PM t
AC CB PQ

= = =  представляет собой параболу 2-го порядка, 

которая имеет следующее точечное уравнение: 
2 2( ) ( ) ,M A C t B C t C= − + − +  

где 1t t= − . 

Определим длины сторон параллелограмма CKML  через параметр t : 

 

2 2

2 2

.

.

CK CKp t CK bt
CA b

KM KMq t KM at
CB a

= = =  =

= = =  =
 (2.123) 

Используя теорему синусов, определим длину отрезка MC  из 

треугольника CKM : 

 ( ) 2sin sin sin .
sin sin sin

MCCKM MC at
KM

π γ γ γ
ϕ ϕ ϕ
−

= = =  =  (2.124) 

Аналогичным образом определим длину отрезка MC  из треугольника 

CML : 

 
 

 

 

 

 

 

 

 

Рисунок 2.30. Геометрическая схема угловой 
параметризации кривой одного отношения 
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 ( ) 2sin sin sin .
sin( ) sin( ) sin( )

MCCLM MC bt
LM

π γ γ γ
γ ϕ γ ϕ γ ϕ

−
= = =  =

− − −
 (2.125) 

Приравниваем длину отрезка MC  из выражений (2.124) и (2.125), 

получим: 

 2 2sin sin .
sin sin( )

MC at btγ γ
ϕ γ ϕ

= =
−

 (2.126) 

Преобразуем выражение (2.126): 

 
2

2
sin( ) 1 sin( ) .

sin sin
t a t a
t b t b

γ ϕ γ ϕ
ϕ ϕ
− − −=  =  (2.127) 

Решим уравнение (2.127) относительно параметра t : 

 sin( )sin ,      .
sin( ) sin sin( ) sin

abt t
a b a b

γ ϕϕ
γ ϕ ϕ γ ϕ ϕ

−
= =

− + − +
 (2.128) 

Подставим значение параметра t  в уравнение параболы 2-го порядка и 

получим искомое уравнение кривой одного отношения, с углом MCA ϕ∠ =  в 

качестве текущего параметра: 

( ) ( )2 2
sin( ) sin( ) ( ) ,

sin( ) sin sin( ) sin

a bM A C B C C
a b a b

γ ϕ ϕ

γ ϕ ϕ γ ϕ ϕ

−= − + − +
− + − +

 

где 0 ϕ γ≤ ≤ . 

 

2.4.2. Радиальная параметризация кривой одного отношения 
Рассмотрим другой пример замены параметра простого отношения трёх 

точек прямой на радиальный параметр. Пусть задана кривая одного отношения 

AP CQ PM t
AC CB PQ

= = = . Необходимо определить точечное уравнение этой кривой с 

помощью параметра CMρ =  (рис. 2.30). 

Из треугольника CKM  определим точку M  с помощью теоремы синусов: 

 ( ) ( )
sin .

sin
M C K Kϕ

γ ϕ
= − − +

−
 (2.129) 

После преобразований получим: 
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 ( )
2

2 .atM C K K
bt

= − − +  (2.130) 

Определим точку K  на прямой CA  с помощью параметра t : 

 ( ) 2 .K A C t C= − +  (2.131) 

Подставим уравнение (2.131) в (2.130) получим: 

 ( )
2 2

.at btM A C C
b
+= − +  (2.132) 

Из уравнения (2.132) получим следующее соотношение: 

 
2 2

.at bt MC
b AC b

ρ+ = =  (2.133) 

Отсюда получим квадратное уравнение, которое устанавливает 

зависимость между параметрами ρ  и t : 

( ) 2 2 0.a b t bt b ρ+ − + − =  

Решим это уравнение относительно параметра t : 

1 2,    .b a b ab b a b abt t
a b a b
ρ ρ ρ ρ− + − + + −= =

+ +
 

Исследуем подкоренное выражение, которое должно быть больше или 

равно нулю: 

0 .aba b ab
a b

ρ ρ ρ+ − ≥  ≥
+

 

Подставим оба корня в точечное уравнение кривой одного отношения. При 

этом дуга кривой одного отношения распадается на две части: 

 ( ) ( )
2 2

1 ,a a b ab b a b abM A C B C C
a b a b
ρ ρ ρ ρ   + + − − + −= − + − +      + +   

 (2.134) 

где abb
a b

ρ≤ ≤
+

. 

 ( ) ( )
2 2

2 ,a a b ab b a b abM A C B C C
a b a b
ρ ρ ρ ρ   − + − + + −= − + − +      + +   

 (2.135) 
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где ab a
a b

ρ≤ ≤
+

. 

 

2.5. Моделирование синусоиды, осью которой является окружность 
Рассмотрим моделирование плоской кривой, построенной равномерно-

поступательным и равномерно-вращательным движением, как и классическая 

синусоида, но в отличие от синусоиды, осью специальной кривой первого 

поколения является окружность, а не отрезок прямой. Осью кривой второго 

поколения будет являться дуга кривой первого поколения и т.д. Таким образом, 

получим семейство дуг кривых, для которых каждая предыдущая кривая 

является осью для кривой последующего поколения, но все эти кривые строятся 

одним и тем же способом, как и синусоида в классической геометрии. 

Построение искомой кривой основывается на геометрическом алгоритме 

построения синусоиды с помощью единичной окружности. Как известно из 

алгебры, длина отрезка прямой, который называется линией синусов, равна 

длине дуги окружности, а угол вращения окружности увязан с углом, с помощью 

которого строится синусоида. 

Пусть CAB  – симплекс плоскости (рис. 2.31), CA b=  – радиус осевой 

окружности, 1AP ρ=  – радиус образующей окружности, 0 2ϕ π≤ ≤  – текущий 

параметр. 

 
Рисунок 2.31. Геометрическая схема синусоиды, 

осью которой является окружность 



98 

Для взаимосвязи угловых параметров ϕ  и θ , длина дуги AQ  должна быть 

равна длине дуги PT . Отсюда определим угловой параметр θ : 

  
1 1

1

,  .bAQ b PT b ϕϕ ρ θ ϕ ρ θ θ
ρ

= =  =  =  (2.136) 

По теореме косинусов из треугольника ATC  имеем: 

 2 2 2 2 2 2
1 1 1 1

1

2 cos( ) 2 cos .bCT CM b b b b ϕρ ρ π θ ρ ρ
ρ

= = + − − = + +  (2.137) 

Для определения точки Q  повернем точку A  вокруг точки C  в 

направлении точки B  на угол ϕ . 

 
( ) ( )

( ) ( ) ( )sin sin .
sin sin

QBC AQC

ABC ABC

S S
Q A C B C C

S S

bA C B C C
a

γ ϕ ϕ
γ γ

= − + − + =

−
= − + − +

 (2.138) 

Далее имеем: 

 

( )

2 2
1 1

1

2 2
1 1

1

2 cos

2 cos
.

bb b
CM
CQ b

bb b
M Q C C

b

ϕρ ρ
ρ

ϕρ ρ
ρ

+ +
= 

+ +
 = − +

 (2.139) 

Подставим уравнение (2.138) в уравнение (2.139) и после преобразований 

получим: 

 
( )

( )

( )

2 2
1 1

1

2 2
1 1

1

sin 2 cos

sin

sin 2 cos
.

sin

bb b
M A C

b

bb b
B C C

a

ϕγ ϕ ρ ρ
ρ

γ
ϕϕ ρ ρ

ρ
γ

− + +
= − +

+ +
+ − +

 (2.140) 
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Чтобы полученная синусоидальная кривая не перекрывала сама себя, 

необходимо, чтобы длина дуги образующей окружности укладывалась в длину 

осевой окружности m  раз. То есть: 

 1 12 2 .bm b
m

πρ π ρ=  =  (2.141) 

Подставив выражение (2.141) в уравнение (2.140), получим окончательное 

уравнение синусоиды, осью которой является окружность. 

 
( ) ( )

( )

2

2

sin 1 2 cos
sin

sin 1 2 cos ,
sin

m m m
M A C

m

b m m mB C C
am

γ ϕ ϕ
γ

ϕ ϕ
γ

− + +
= − +

+ ++ − +

 (2.142) 

где BCAγ = ∠ ; 

m– количество волн синусоиды; 

a BC= ; b AC= ; 0 2ϕ π≤ ≤ . 

Аналогичным образом определим синусоиду второго поколения, для 

которой осью будет уже не окружность, а синусоида первого поколения (2.142). 

Новая дуга кривой будет определяться текущей точкой N , для которой текущая 

точка M  из уравнения (2.142) будет иметь то же самое значение, как и текущая 

точка Q  при определении точки M  (рис. 2.31), только радиус окружности, 

который определяет второе поколение дуги кривой, будет равен 2ρ . Тогда, 

учитывая все вышесказанное, получим следующую зависимость: 

 1
1 2 22 2 ,m bm n

n n
ρπρ πρ ρ=  = =  (2.143) 

где n  – количество волн синусоиды второго поколения. 

Определим уравнение текущей точки N , аналогично (2.142): 
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( )

( )
( ) ( )( )

( ) ( )( )

2 2
2 2

2

2 2

2 2

2 cos

sin 1 2 cos 1 2 cos
sin

sin 1 2 cos 1 2 cos
.

sin

bb b
N M C C

b

m m m n n n
A C

mn

b m m m n n n
B C C

amn

ϕρ ρ
ρ

γ ϕ ϕ ϕ
γ

ϕ ϕ ϕ
γ

+ +
= − + =

− + + + +
= − +

+ + + +
+ − +

 (2.144) 

 

Выполним визуализацию полученных синусоидальных кривых первого и 

второго поколений. На рисунке 2.32 зеленым цветом показана исходная дуга 

окружности, красным – синусоида первого поколения, осью которой является 

окружность, синим – синусоида второго поколения, осью которой является 

синусоида первого поколения. 

 
Этот алгоритм можно обобщить для определения синусоидальной кривой 

t − го поколения: 

 
( ) ( )

( )

2

1

2

1

1 2 cossin
sin

1 2 cossin ,
sin

t
i i i

t
i i

t
i i i

i i

k k k
K A C

k

k k kbB C C
a k

ϕγ ϕ
γ

ϕϕ
γ

=

=

+ +−
= − +

+ +
+ − +

∏

∏
 (2.145) 

где tK  – текущая точка синусоидальной кривой t −го поколения. 

 

Рисунок 2.32. Визуализация синусоидальных кривых 
первого и второго поколений 
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2.6. Моделирование кривой 3-го порядка, как линии пересечения 
поверхностей второго порядка 

Определение кривых, как результат пересечения поверхностей, является 

одним из классических подходов к формообразованию кривых линий в 

инженерной геометрии, который также применяется в точечном исчислении. В 

качестве примера рассмотрим моделирование кривой 3-го порядка, как линии 

пересечения поверхностей 2-го порядка. 

Из проективной геометрии известно, что линия пересечения поверхностей 

2-го порядка – это кривая 4-го порядка, которая, в частном случае, может 

распадаться на две кривых 2-го порядка или на прямую и кривую 3-го порядка. 

Исходя из этого используем две поверхности 2-го порядка с общей образующей 

для определения кривой 3-го порядка. 

Пусть задан симплекс трехмерного пространства ABCD  (рис. 2.33). В этом 

симплексе определим два конуса. В качестве оснований обоих конусов будем 

использовать две дуги кривых 2-го порядка: APB  и AQB . Вид дуги 

соответствующей кривой 2-го порядка определим с помощью инженерных 

дискриминантов Pf  и Qf : 

 

( )
( )

( )
( )

( )
( )

( )
( )

2 2

2 2

2 2

2 2

,
1 2 2 1 2 2

,
1 2 2 1 2 2

P P

P P

Q Q

Q Q

f u f uP A C B C C
f u uu f u uu

f v f v
Q A C B C C

f v vv f v vv

= − + − +
− + − +

= − + − +
− + − +

 (2.146) 

где 1u u= − , 1v v= − . 
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Чтобы в соответствии с геометрической схемой (рис. 2.33) обеспечить 

пересечение прямых PD  и NQ  в пределах симплекса ABCD , параметр Pf , 

который определяет отношение на медиане дуги APB , должен быть меньше 

параметра Qf , который определяет отношение на медиане дуги AQB . Причём, 

для существования дуги кривой 3-го порядка, исходные дуги кривых 2-го 

порядка не должны совпадать, т.е. P Qf f≠ . Если это условие выполняется, то 

текущая точка M  будет находиться в пределах симплекса ABCD . 

Также для построения дуги кривой 3-го порядка необходимо согласовать 

текущих параметры u  и v , которые определяют исходные дуги кривых 2-го 

порядку. Поскольку точки A , P  и Q  принадлежат одной прямой, то площадь 

треугольника APQ  должна быть равна нулю. Исходя из этого условия согласуем 

текущие параметры u  и v . В соответствии с S -теоремой точечного исчисления, 

получим: 

 
( ) ( )

( ) ( )

2 2

2 2

2 2

2 2

1 0 1

1 0.
1 2 2 1 2 2

1
1 2 2 1 2 2

P P

P P

Q Q

Q Q

f u f u
f u uu f u uu

f v f v
f v vv f v vv

=
− + − +

− + − +

 (2.147) 

Из выражения (2.147) получим: 

Рисунок 2.33. Геометрическая схема моделирования дуги 
кривой 3-го порядка 
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,

0

P Q

P Q Q P

Q P
P Q Q P

Q P P Q

f f u
v

f f u f f u

f f
f f u f f u u

f f f f

=
+

+ ≠ → ≠
−

 (2.148) 

где 1P Pf f= − , 1Q Qf f= − , 1u u= − . 

Из выражения (2.148) видно, что для обеспечения согласования 

параметров необходимо выполнение дополнительных условий: 

 
( )
( )

2

2

1 2 2 0,

1 2 2 0.
P

Q

f u uu

f v vv

− + ≠

− + ≠
 (2.149) 

Преобразуем первое из этих выражений: 

 
( ) ( )

2 2

2

2 0
4 2 4 2 0.

P P P

P P P

f u f uu f u
f u f u f

+ + ≠ 

 − − − + ≠
 (2.150) 

Из выражения (2.150) определим значения параметра u , которые не 

удовлетворяют условию (2.149): 

 1 11 .
2 1 2 P

u
f

 
≠ − ±  − 

 (2.151) 

Подставив значение параметра v  в условие (2.149), получим второе 

дополнительное условие, выраженное через параметр u : 

 
( )

( )

2

2

2
0.Q Q P P Q P Q P Q

P Q Q P

f f f u f f u f f f f uu

f f u f f u

− +
≠

+
 (2.152) 

Из выражения (2.152) определим значения параметра u , которые не 

удовлетворяют второму условию (2.149): 

 
( )2 2

2 2 2 2 2 .
2

P P Q P Q P P Q Q Q

Q P P Q P P Q

f f f f f f f f f f
u

f f f f f f f
− ± −

≠
+ −

 (2.153) 

Переходим к дуге AQB . Подставив выражение (2.148) в уравнение (2.146), 

получим: 
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( ) ( )
( ) ( )

2 2 2

2 2 2 2 2 2 2 2

2 2 2

2 2 2 2 2 2 2 2

2

.
2

Q P

Q P P Q P P Q

P Q

Q P P Q P P Q

f f u
Q A C

f f u f f u f f f uu

f f u
B C C

f f u f f u f f f uu

= − +
+ + −

+ − +
+ + −

 (2.154) 

В соответствии с геометрической схемой (рис. 2.33) один из конусов 2-го 

порядка имеет вершину D , а второй – вершину N . На прямой AD , которая 

является общей образующей для обоих конусов, определим точку N  с помощью 

параметра n : 

 1 .DADNA
AN n

= = −  (2.155) 

После преобразований простого отношения трёх точек, получим 

уравнение точки N : 

 ( ) .N D A n A= − +  (2.156) 

В соответствии с теоремой О-теоремой точечного исчисления (в данном 

случае она совпадает с теоремой Менелая), при рассечении треугольника DNM  

прямой APQ  получим следующее соотношение: 

 1.NMQ MDP DNA⋅ ⋅ = −  (2.157) 

Подставив выражение (2.155) в соотношение (2.157), получим: 

 .N Q M P n
Q M P D

− −⋅ =
− −

 (2.158) 

Отсюда выделим текущую точку M  дуги кривой 3-го порядка: 

 ( ) ( )
( ) ( ) .

nQ P D P N Q
M

n P D N Q
− + −

=
− + −

 (2.159) 

Полученный результат рационально представить в виде вычислительного 

алгоритма с использованием покоординатного расчёта. Для упрощения итоговых 

параметрических уравнений используем вместо симплекса ABCD  декартовый 

симплекс 1 2 3OE E E , для которого ( )1 1;0;0E , ( )2 0;1;0E , ( )3 0;0;1E , ( )0;0;0O . 
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Вычислительный алгоритм моделирования дуги кривой 3-го порядка 

1. Задаём значения инженерных дискриминантов Pf  и Qf , определяющих 

вид исходных дуг кривых 2-го порядка. 

2. Проверяем выполнение условий (2.151) и (2.153). 

3. Определяем параметрические уравнения исходных дуг кривых 2-го 

порядка: 

Дуга 1 2E PE : 

( )

( )

( )

2

2

2

2

2

,
1 2 2

,
1 2 2

2 .
1 2 2

P
P

P

P
P

P

P
P

P

f ux
f u uu

f uy
f u uu

f uuz
f u uu


=

− +

 =

− +

 =
 − +

 

Дуга 1 2E QE : 

( )

( )
( )

( )

2 2 2

2 2 2 2 2 2 2 2

2 2 2

2 2 2 2 2 2 2 2

2 2

2 2 2 2 2 2 2 2

,
2

,
2

2
.

2

Q P
Q

Q P P Q P P Q

P Q
Q

Q P P Q P P Q

P P Q
Q

Q P P Q P P Q

f f u
x

f f u f f u f f f uu

f f u
y

f f u f f u f f f uu

f f f uu
z

f f u f f u f f f uu


 =
 + + −



=
+ + −


− = + + −

 

4. Определяем точку N  с помощью параметра n : 

,
0,
0.

N

N

N

x n
y
z

=
 =
 =

 

5. Определяем параметрические уравнения дуги кривой 3-го порядка: 
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( )
( ) ,

,

.

Q P P Q
M

P Q

Q P P Q
M

P Q

Q P P Q
M

P Q

nx x x n x
x

nx n x

ny y y y
y

ny y
nz z z z

z
nz z

 + −
=

+ −
 − = −
 −
 =

−

 

С помощью системы компьютерной алгебры выполним визуализацию 

полученных кривых 3-го порядка (табл. 2.2). 

 
Таблица 2.2. Визуализация дуг кривых 3-го порядка 

Вид кривой 
2-го порядка 

Значения 
параметров Визуализация дуги кривой 3-го порядка 

Гипербола 0,2Pf =  

 

Парабола 0,5Qf =  

Парабола 0,5Pf =  

 

Эллипс 0,8Qf =  

Гипербола 0,3Pf =  

 

Эллипс 0,8Qf =  
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Гипербола 0,1Pf =  

 

Гипербола 0,4Qf =  

Эллипс 0,6Pf =  

 

Эллипс 0,9Qf =  

 

2.7. Моделирование дуг обвода в общем виде 
Для определения точечного уравнения дуги обвода используем описанный 

ранее геометрический алгоритм моделирования параболы, как кривой одного 

отношения, описанный в пункте 2.1.3.1 данной монографии. Только отношения 

на звеньях ломаной будем задавать с помощью трёх непрерывных и 

дифференцируемых функций от единого параметра t : 

( ) ( ) ( ),    ,    .u u t v v t w w t= = =  

В результате получим следующую последовательность точечных 

уравнений: 

( )
( )
( )

1 1 3

2 3 2

1 2

1 ,
1 ,
1 ,

B A u A u

B A v A v

M B w B w

= − +


= − +
 = − +

 

Исключая промежуточные точки 1B  и 2B , получим: 

 ( )( ) ( )( )1 2 31 1= 1 .M u w u A vwA u v w u A− + − + + − − + +  (2.160) 

Поставим условие, в соответствии с которым необходимо определить 

такие значения функций ( ) ( ) ( ),  ,  u u t v v t w w t= = = , при которых прямая 1 2B B  
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будет являться касательной к кривой, заданной уравнением 2.160. Для этого 

продифференцируем это уравнение: 

( ) ( )( ) ( ) ( ) ( )( )1 2 31 1 1 1 ,M u w w u A vw vw A u w vw w u v A= − + − + + + − − + − −         

где ,  ,  u v w    – производные функций ( ) ( ) ( ),  ,  u u t v v t w w t= = =  по параметру t . 

Из приведенной выше системы параметрических уравнений определим 

разность точек 2B  и 1B : 

( ) ( )2 1 1 2 31 1 .B B u A A v u v A− = − + + − −  

Если все прямая 1 2B B  является касательной к кривой, то вместе с точкой 

M  они образуют простое отношение трёх точек прямой, которое является 

инвариантом параллельного проецирования. Тогда справедливо следующее 

выражение: 

2 1B B k
M
− =  или 2 1 ,B B kM− =   

где k  является числом, не зависящим от исходных точек симплекса 1 2 3A A A . 

Исходя из этого составим систему дифференциальных уравнений для 

функций при точках симплекса 1 2 3,  ,  A A A : 

( ) ( )( )
( )

( ) ( )( )

1 1 1

1 1 1

.

k u w w u u

k vw vw v

k u w vw w u v u v

− + − = −

+ =

− − + −





 − = − −

 

 

  

 

Разделим первое уравнение системы на второе: 

( ) ( )1 1 1.
u w w u u

vw vw v
− + − −=

+
 

 
 

Определим из полученного выражения функцию w : 

( ) .
1

uvw
uv v u

=
+ −


 
 

Подставим полученное выражение в точечное уравнение (2.160). 

 ( )
( ) ( )

( ) ( )
( )

2 2

1 2 3
1 1 1

.
1 1 1

=
v u uv v vu uuvM A A A

uv v u uv v u uv v u
− − + −

+ +
+ − + − + −
  
     

 (2.161) 
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Это уравнение можно представить в более компактной форме с 

использованием разностей точек симплекса: 

( ) ( )
( ) ( ) ( )

2 2

1 3 2 3 3
1

.
1 1

=
v u uvM A A A A A

uv v u uv v u
−

− + − +
+ − + −
 
   

 

Полученное уравнение описывает дугу обвода с касательными в начальной 

и конечной точках. Кривизну дуги обвода можно регулировать выбором 

функций ( )u u t=  и ( )v v t= , но функции должны быть не только непрерывными 

и дифференцируемыми. Необходимо выполнение дополнительных условий 

( ) ( ) ( ) ( )0 0,  0 0,  1 1,  1 1u v u v= = = = , что следует из геометрического алгоритма 

(рис. 2.13). 

Для проверки полученного уравнения примем v u t= =  и подставим в 

уравнение (2.161). В результате получим уравнение 2.58 из пункта 2.1.3.1 

монографии, что подтверждает достоверность полученных результатов. 

 

2.8. Параметризация циклоиды в точечном исчислении 
Циклоида – это плоская трансцендентная кривая, очерчиваемая точкой на 

окружности, когда окружность катится по прямой без скольжения. Эта кривая 

имеет очень важные свойства в физике и математике, особенно в отношении 

проблемы построения брахистохроны. 

Задача построения брахистохроны предполагает определение кривой 

между двумя точками на разных вертикальных уровнях, по которой частица 

будет опускаться исключительно под действием силы тяжести за кратчайшее 

время. Иоганн Бернулли решил эту задачу в 1696 году, показав, что оптимальный 

путь – это циклоида. Это говорит о том, что среди всех возможных кривых, 

соединяющих две точки, любая частица без трения быстрее всего достигнет 

нижней точки, если будет следовать циклоидальному пути. 

Помимо свойств брахистохронности, циклоида также обладает свойством 

таутохронности – частице, выпущенной из любой точки циклоидальной кривой, 

потребуется одинаковое время, чтобы достичь самой низкой точки. Эту 
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характеристику использовал Христиан Гюйгенс при разработке изохронных 

маятников для точного измерения времени.  

Пусть задан плоский симплекс CAB . На рис. 2.34 показан прямоугольный 

симплекс ,CAB  но все полученные выражения справедливы для любого плоского 

симплекса. FK r= – радиус образующей окружности, 2AC r= , BC rπ= , ϕ  – 

текущий параметр, MT  – касательная к циклоиде в текущей точке M , MK  – 

нормаль к касательной MT , BK rϕ= , 
2
ϕθ = . 

 
Рисунок 2.34. Геометрическая схема полуциклоиды 

 

Определим текущую точку Q  из следующего соотношения: 

sin sin sin .CQ CK KQ CB KB r r r r
CB CB CB r

ϕ π ϕ ϕ π ϕ ϕ
π π

+ − + − + − += = = =  

sin .C Q
C B

π ϕ ϕ
π

− − +=
−

 

Откуда имеем: 

( ) sinQ B C Cπ ϕ ϕ
π

− += − + . 

Аналогично находим текущую точку P : 

( )cos 1 cos
2 2

CP r r P A C C
CA r r

ϕ ϕ− −=  = − + , 

cos 1 cos .
2 2

CP CL PL r r
CA CA r

ϕ ϕ− − −= = =  
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( )1 cos 1 cos .
2 2

C P P A C C
C A

ϕ ϕ− − −=  = − +
−

 

Итоговое точечное уравнение полуциклоиды определим с помощью 

точечной формулы параллельного переноса [3]: 

 ( ) ( )1 cos sin ,
2

M P Q C A C B C Cϕ π ϕ ϕ
π

− − += + − = − + − +  (3.11) 

где 0 ϕ π≤ ≤  (рис. 2.35а). 

Соответственно при 0 2ϕ π≤ ≤  (рис. 2.35б) получим уравнение всей 

циклоиды вдоль прямой BC . Аналогичным образом можно получить несколько 

циклоид меняя тригонометрические функции в пределах 0 2 nϕ π≤ ≤ , где n  – 

натуральное число. 

Возможна также параметризация через угловой параметр θ  (рис. 2.34): 

( ) ( ) ( ) ( )1 cos 2 2 sin 2
,

2
M A C B C C

θ π θ θ
π

− − +
= − + − +  

где 0 .
2
πθ≤ ≤  

Для вогнутой кривой уравнение полуциклоиды примет следующий вид: 

 1 cos sin( ) ( ) ,
2

M A C B C Cϕ π ϕ ϕ
π

− − −= − + − +  (3.12) 

где 0 .ϕ π≤ ≤  

  
а) б) 

Рисунок 2.35. Визуализация выпуклой дуги циклоиды: 
а) при 0 ϕ π≤ ≤ ; б) при 0 2ϕ π≤ ≤  
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Интересно, что при изменении параметра от 0 до π  мы фактически 

получим дугу обвода AB  с касательными AC  и BC  (рис. 2.36а), которая может 

быть использована для моделирования обвода первого порядка гладкости. 

Следует отметить, что при вершине A  формируется не просто касательная, а 

точка возврата 1-го рода. Визуализация дуги циклоиды на интервале изменения 

текущего параметра 0 2ϕ π≤ ≤  представлена на рисунке 2.36б. 

  
а) б) 

Рисунок 2.36. Визуализация вогнутой дуги циклоиды: 

а) при 0 ϕ π≤ ≤ ; б) при 0 2ϕ π≤ ≤  
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ГЛАВА 3. МОДЕЛИРОВАНИЕ КРИВЫХ ОДНОГО ОТНОШЕНИЯ 
 

Под кривыми одного отношения будем понимать кривые, 

параметризованные на основе единого параметра – простого отношения трёх 

точек прямой. Преимуществом таких кривых является инвариантность по 

отношению к аффинным преобразованиям, что обеспечивает возможность их 

использования в инженерной геометрии. Одним из примеров кривой одного 

отношения служит кривая Безье 2-го порядка, описанная в пункте 2.1.3.1 данной 

монографии. В данном разделе рассмотрим другие геометрические алгоритмы 

моделирования кривых одного отношения, параметризованных в точечном 

исчислении. 

 

3.1. Моделирование кривой одного отношения методом подвижного 
симплекса 

Одним из самых простых геометрических алгоритмов моделирования 

кривой заключается в реализованном посредством одного отношения движении 

точек по двум прямым (рис. 3.1).  

 
Рисунок 3.1. Геометрическая схема моделирования кривой одного отношения 

В данном примере прямая BN  представляет собой подвижный симплекс 

одномерного пространства, по которому движется точка M . В свою очередь 

точка N  движется по прямой AC . Тогда простое отношение трёх точек двух 

этих прямых выглядит следующим образом: 

.AN NM t
AC NB

= =  
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Используя инвариантные свойства простого отношения трёх точек прямой 

относительно параллельного проецирования, получим последовательность двух 

точечных уравнений: 

( )
( )
1 .
1

=
.=

N A t Ct

M N t Bt

− +


− +
 

Выполнив подстановку, получим уравнение дуги кривой в симплексе 

:ABC  

 2 ,=M At Bt Ctt+ +  (3.1) 

где 1t t= − . 

Из этого уравнения можно исключить любую из точек симплекса и 

представить уравнение с разностью точек. Например, исключим точку C : 

( ) ( )2= .M A C t B C t C− + − +  

Визуализация полученной кривой одного отношения представлена на 

рис. 3.2. 

 
Рисунок 3.2. Визуализация кривой одного отношения в симплексе CAB  

 

Проанализируем полученное уравнение кривой. При 0t =  кривая проходит 

через точку A . При 1t =  кривая проходит через точку B . Отрезок BC  является 

касательной к кривой в точке B . Отрезок AC  не является касательной в точке 

A . 
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3.2. Моделирование дуги кривой 2-го порядка в симплексе DABC  
В симплексе DABC  рассмотрим кривую одного отношения, для которой 

AP DQ PM t
AC DB PQ

= = =  (рис. 3.3).  

 
Точечный алгоритм её представляет систему трех линейных точечных 

уравнений: 

A P D Q P M t
A C D B P Q

− − −= = =
− − −

. 

Исключая промежуточные точки P  и Q , получим точечное уравнение 

кривой: 

 2 2( ) .M At C D tt Bt= + + +  (3.2) 

Исследуем свойства полученной кривой. При 0t M A= → ≡ , при 

1t M B= → ≡ , при 1
2 4

A B C Dt M K+ + += → = = . 

Утверждение 1. Кривая проходит через точки ,  A B  и центр K  тяжести 

тетраэдра ABCD . 

Отрезки PQ , опираясь концами P  и Q  на скрещивающиеся прямые AC  и 

BD  образуют пространственную линейчатую поверхность, на которой 

располагается исследуемая кривая (3.2). Возникает вопрос: имеет ли эта кривая 

двоякую кривизну? Ответ, на этот вопрос, дает утверждение 2. 

Утверждение 2. Кривая принадлежит плоскости KAB . 

Для доказательства этого утверждения удостоверимся, что объем 

пирамиды MKAB  равен нулю для всех положений текущей точки M  кривой: 

 
 

  

 

 

 

Рисунок 3.3. Кривая одного отношения в симплексе  
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2 2

1 1 1 1 1 1
04 4 4 4 1 141 0 0 0

0 0 0 1

t tt tt t

tt= = . 

Определим середину S  отрезка CD : 
2

C DS += . Легко заметить, что точка 

S  принадлежит плоскости кривой (3.2). При этом уравнение (3.2) принимает 

вид: 

 2 22 .M At Stt Bt= + +  (3.3) 

Кривая (3.3) известная в точечном исчислении как парабола 2-го порядка 

AB  с касательными AS  и BS , которая была ранее рассмотрена в разделе 2.1.3.1 

данной монографии. 

 

3.3. Моделирование кривой Безье 3-го порядка 
Моделирование кривой Безье 2-го порядка было представлено в пункте 

2.1.3.1 данной монографии. Приведенный ранее геометрический алгоритм 

построения кривой Безье, как кривой одного отношения, по двухзвенной 

ломаной Бернштейна имеет обобщение. 

Рассмотрим пример использования простого отношения трёх точек прямой 

для моделирования дуги кривой Безье 3-го порядка, которая имеет широкое 

применение в различных областях науки и техники. Геометрический алгоритм 

построения дуги кривой Безье 3-го порядка представлен на рис. 3.4. В общем 

случае касательные 1AC  и 2BC  скрещиваются, формируя тем самым симплекс 3-

мерного пространства. Тогда получим кривую двоякой кривизны, которая, 

например, может использоваться в качестве ребра возврата торсовой 

поверхности. В частном случае касательные могут пересекаться, образуя 

симплекс плоскости и, соответственно, плоскую кривую Безье. 
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Рисунок 3.4. Геометрическая схема определения дуги кривой Безье 3-го 

порядка 

Известно, что для кривой Безье справедливым является следующее 

соотношение: 

1 1 2 2 3 1 1 2 2 1

1 1 2 2 1 2 2 3 1 2

.AP C P C P PQ P Q Q M t
AC C C C B PP P P Q Q

= = = = = =  

Учитывая инвариантные свойства простого отношения трёх точек прямой, 

получим: 

1 1 2 2 3 1 1 2 2 1

1 1 2 2 1 2 2 3 1 2

.A P C P C P P Q P Q Q M t
A C C C C B P P P P Q Q

− − − − − −= = = = = =
− − − − − −

 

Учитывая, что обозначение точки является символьной записью, 

подразумевающей вычисление координат посредством покоординатного 

расчёта, будем выполнять арифметические операции над точками, как над 

простыми числами. Тогда полученное соотношение приводит к 

последовательности линейных точечных уравнений: 

( )
( )
( )
( )
( )
( )

1 1

2 2 1 1

3 2 2

1 2 1 1

2 3 2 2

2 1 1

,
,

,
,

,

.

P C A t A

P C C t C

P C B t C

Q P P t P

Q P P t P

M Q Q t Q

= − +

= − +

= − +

= − +

= − +

= − +












 

Исключая промежуточные точки 1P , 2P , 3P , 1Q  и 2Q , получим точечное 

уравнение дуги кривой Безье 3-го порядка: 

 3 2 2 3
1 23 3 ,M At C t t C tt Bt= + + +  (3.4) 

где [ ]0; 1t ∈  − параметр, определяющий текущую точку М кривой; 
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1t t= −  – дополнение параметра t  до 1. 

Этот геометрический алгоритм и его параметризация имеют известное 

обобщение на основе полиномов Бернштейна, реализованных в векторно-

параметрической форме, что полностью соответствует парадигме точечного 

исчисления. 

Используя инвариантные свойства параметра t  относительно 

параллельного проецирования для 3-мерного пространства получим систему 

однотипных параметрических уравнений: 

1 2

1 2

1 2

3 2 2 3

3 2 2 3

3 2 2 3

3 3

3 3 .

3 3

M A C C B

M A C C B

M A C C B

x x t x t t x tt x t

y y t y t t y tt y t

z z t z t t z tt z t

 = + + +
 = + + +


= + + +

 

Как видно из приведенного примера простое отношение трёх точек прямой 

является достаточно простым и эффективным инструментом геометрического 

моделирования. 

 

3.4. Моделирование кривых двойного соприкосновения 
Под кривыми двойного соприкосновения в данной работе понимаются 

кривые, для которых кривые первого и второго поколения имеют одни и те же 

касательные в начальной и конечной точках, обеспечивая тем самым двойное 

касание. Для их моделирования используются в качестве кривых первого 

поколения кривые второго порядка, параметризованные с помощью инженерных 

дискриминантов (раздел 2.1.6 монографии). Отличительной особенностью таких 

кривых является сохранение геометрических свойств касания в начальной и 

конечной точках от кривых первого поколения. Кривые первого поколения 

согласованы друг с другом одним и тем же параметром, что позволяет отнести 

их к кривым одного отношения. Вместе с тем, это только частный случай. В 

общем случае предложенный подход позволяет использовать функции от 

параметра для управления формой и кривизной полученной кривой. 
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Геометрическая схема кривых двойного соприкосновения выглядит 

следующим образом (рис. 3.5). 

 
Рисунок 3.5. Геометрическая схема определения кривых двойного 

соприкосновения 
На данной схеме кривые первого поколения P  и Q , движение текущей 

точки которых согласовано одинаковым параметром v , используются для 

построения кривой второго поколения с текущей точкой M . Обе кривые первого 

поколения являются кривыми 2-го порядка и имеют одинаковые касательные в 

начальной и конечной точках, которые определяются однотипными 

уравнениями в одном и том же симплексе ABC , но при этом имеют разные 

значения инженерных дискриминантов pk  и qk . 

( )
( )

( )
( )

( )
( )

( )
( )

2 2

2 2

2 2

2 2

.
1 2 2 1 2 2

.
1 2 2 1 2 2

p p

p p

q q

q q

k v k v
P A C B C C

k v vv k v vv

k v k v
Q A C B C C

k v vv k v vv

= − + − +
− + − +

= − + − +
− + − +

  

Исходя из геометрической схемы (рис. 3.5) обязательным условием 

существования кривой второго поколения является использование разных 

значений инженерных дискриминантов p qk k≠ . В противном случае получим 

совпадение кривых первого и второго поколения. 

Для построения кривой второго поколения можно использовать линейную 

функцию M Pv Qv= + , как это было предложено в работе [14]. Тогда, варьируя 

значениями инженерных дискриминантов pk  и qk , получим семейство кривых 3-

го порядка. Вместе с тем, вместо параметра v  могут быть использованы 
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различные функции, использование которых позволяет управлять формой 

кривой наряду со значениями инженерных дискриминантов. Тогда уравнение 

кривой второго поколения примет следующий вид: 

( )( ) ( ) ( )( ) ( )
( )( ) ( )

1
1 ,

1
P Q

P Q

x x f v x f v
M P f v Qf v

y y f v y f v

 = − += − + 
= − +

 

где ( )f v  – непрерывная и дифференцируемая функция, определяющая характер 

взаимодействия между кривыми первого поколения. 

Проведём ряд вычислительных экспериментов для построения и 

визуализации результатов моделирования, графического представления 

функций, которые были отображены выше. Для этого воспользуемся одной из 

систем компьютерной алгебры. 

В качестве примера на рисунке 3.6 приведены кривые двойного 

соприкосновения, показанные зелёным цветом, и исходные кривые первого 

поколения, показанные красным цветом. Каждый из полученных графиков 

функций описывает свою траекторию конкретной кривой с разными парами 

значений инженерного дискриминанта. 

  
а) б) 

Рисунок 3.6. Визуализация кривой двойного соприкосновения: 
а) с уравнением ( )2 21M P v Qv= − +  и значениями kp = 0.3 и kq = 0.7; 

б) с уравнением ( )1M P v Q v= − +  и значениями kp = 0.3 и kq = 0.7 
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Для случая а) при ( )2 21M P v Qv= − +  со значениями инженерных 

дискриминантов kp = 0.3 и kq = 0.7 точечное уравнение кривой двойного 

соприкосновения принимает следующий вид: 

( ) ( )( )
( ) ( )( )

6 5 4 3 2

2 2

6 5 4 3 2

2 2

0.8 2.4 2.16 0.08 0.93 0.66 0.21
0.8 0.8 0.3 0.8 0.8 0.7

0.8 0.8 0.24 0.24 0.21 .
0.8 0.8 0.3 0.8 0.8 0.7

v v v v v vM A C
v v v v

v v v v vB C C
v v v v

− + − − + −= − +
− − − +

− − + −+ − +
− − − +

 

Для случая б) при ( )1M P v Q v= − +  со значениями инженерных 

дискриминантов kp = 0.3 и kq = 0.7 точечное уравнение кривой двойного 

соприкосновения принимает следующий вид: 

( ) ( )( ) ( )

( ) ( )

2 2

2 2

2 5/2

2 2

1.0 v 0.3 0.6 0.3 0.7 1.4 0.7 v
0.8 0.8 0.3 0.8 0.8 0.7

0.3 1.0 v 0.7 .
0.8 0.8 0.3 0.8 0.8 0.7

v v v v
M A C

v v v v

v vB C C
v v v v

 − + − + − + = − + +
 − − − +
 

 − +
 + − + +
 − − − +
 

 

Для оценки качества полученных кривых проанализируем график 

кривизны при использовании различных функций, обеспечивающих 

взаимодействие между кривыми первого и второго поколения, варьируя при 

этом различными значениями инженерных дискриминантов. Поскольку 

точечные уравнения полученных кривых сводятся к параметрическим, 

определим кривизну для параметрической кривой с помощью производных 

первого и второго порядка параметрически заданной функции: 

( ) ( )( )
/ / / / / /

3
2 2 2/ /

,v v v v

v v

x y x y
K

x y

−
=

+
  

где /
vx  и /

vy  – первые производные по параметру v ; 
/ /
vx  и //

vy  – вторые производные по параметру v . 
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Результаты исследований приведены в таблице 3.1. На рисунках в таблице 

3.1 график функции показан зелёным цветом, а график кривизны – синим. Для 

большей наглядности график кривизны увеличен по вертикали в 10 раз. 

Таблица 3.1. Исследование кривых двойного соприкосновения 

№ 
п/п 

Функция 
( )f v  kp kq 

Визуализация 
кривой и графика 

кривизны 
kp kq 

Визуализация 
кривой и графика 

кривизны 

1 0.5 0.3 0.5 

 

0.2 0.8 

 

2 0.5 1.3 0.5 

 

1.2 1.8 

 

3 0.5 -0.5 0.5 

 

-1.4 -0.4 

 

4 5v  0.4 0.7 

 

0.5 0.3 

 

5 ( )sin v  0.3 0.5 

 

0.7 0.5 
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6 ( )2sin v  0.3 0.5 

 

0.7 0.5 

 

7 ( )tg v  0.4 0.2 

 

0.8 0.5 

 

8 ( )arccos v  0.4 0.2 

 

0.7 0.8 

 

9 ( )sh v  0.5 0.3 

 

0.6 0.8 

 

10 ( )ln v  0.4 0.5 

 

0.7 0.8 

 

11 v  0.3 0.5 

 

0.4 0.7 
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12 ev  0.3 0.4 

 

0.8 0.6 

 
 

 

Анализируя результаты, представленные в таблице 3.1, можно сделать 

следующие выводы: 

1. Полученные кривые при любых значениях инженерного дискриминанта 

будут иметь две касательные в начальной и конечной точках. Это 

геометрическое свойство наследуется от кривых первого поколения и не зависит 

от выбора функции ( )f v . 

2. При выборе значений инженерного дискриминанта в диапазоне 

значений (0,1), кривая второго поколения располагается внутри исходного 

симплекса ABC . Если значения инженерного дискриминанта будут больше 1, то 

кривая второго поколения будет располагаться за пределами исходного 

симплекса ABC , но при этом будет сохранять касание в начальной и конечной 

точках. При отрицательных значениях инженерного дискриминанта кривая 

распадается на несколько прямых в зависимости от количества отрицательных 

инженерных дискриминантов. 

3. Кривизна кривых двойного соприкосновения зависит от значения 

инженерного дискриминанта кривых первого поколения: чем ближе друг к другу 

эти значения, тем она плавнее. 

4. Кривизна кривых второго поколения, полученная на основе 

полиномиальных функций ( )f v , является более устойчивой к выбору значений 

инженерного дискриминанта кривых первого поколения. 

 

 

 



125 

3.5. Моделирование замкнутых алгебраических кривых 
В процессе исследований кривых одного отношения в работе [14] было 

установлено, что значительное влияние на них оказывает направление движения 

текущих точек. В результате, были получены замкнутые кривые с двойной 

точкой, которые могут найти применение в инженерной практике. 

Кривая одного отношения [14] получается при согласовании двух дуг 

кривых 2-го порядка (к2п) с помощью одного и того же параметра в соответствии 

с геометрической схемой конструирования дуги кривой. При этом движение 

текущих точек исходных к2п и текущей точки переменного отрезка прямой, 

соединяющего текущие точки исходных к2п, согласовано с помощью одного и 

того же параметра, в качестве которого используется преобразованное простое 

отношение трех точек прямой. Используя встречное направление движения 

текущих точек исходных дуг к2п, получим замкнутую дугу кривой 3-го порядка 

(к3п). 

 
Рисунок 3.7. Геометрическая схема №1 конструирования плоской к3п 

Рассмотрим первую из геометрических схем конструирования дуги к3п, 

(рис. 3.7). Две дуги к2п определяются в одном и том же симплексе АВС и одним 

и тем же параметром u, но разным отношением на медиане. При этом текущие 

точки движутся по встречным направлениям: точка Q от точки А к точке В, а 

точка Р от точки В к точке А. Уравнения исходных дуг к2п имеют следующий 

вид: 
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( ) ( )

( ) ( )

2 2

2 2

2 2

2 2

,
(1 2 ) 2 (1 2 ) 2

,
(1 2 ) 2 (1 2 ) 2

P P

P P

Q Q

Q Q

k u k uP A C B C C
k u uu k u uu

k u k u
Q A C B C C

k u uu k u uu

= − + − +
− + − +

= − + − +
− + − +

 

где 1u u= − . 

Дуга к3п образована движением текущей точки M  (рис. 3.7) по 

переменному отрезку PQ : 

.M Pu Qu= +  

После подстановки и преобразований получим точечное уравнение дуги 

к3п, соответствующее геометрической схеме №1 конструирования плоской к3п: 

( )
( ) ( )

( )
( ) ( )

22

2 2

33

2 2

1 2 2 1 2 2

.
1 2 2 1 2 2

QP

P Q

QP

P Q

k u uk u uM A C
k u uu k u uu

k uk uB C C
k u uu k u uu

 
 = − + +
 − + − + 

 
 + − + +
 − + − + 

 

Рассмотрим следующую геометрическую схему конструирования 

замкнутых дуг к3п (рис. 3.8). Аналогично геометрической схеме №1 (рис. 3.7) 

движение текущих точек исходных к2п осуществляется по встречным 

направлениям. 

( ) ( )

( ) ( )

2 2

2 2

2 2

2 2

,
(1 2 ) 2 (1 2 ) 2

.
(1 2 ) 2 (1 2 ) 2

P P

P P

Q Q

Q Q

k u k uP A C B C C
k u uu k u uu

k u k u
Q C A B A A

k u uu k u uu

= − + − +
− + − +

= − + − +
− + − +

 

Точечное уравнение дуги к3п, геометрическая схема которой представлена 

на рис. 3.8, имеет следующий вид: 

( )
( )

( )
( )

( )
( ) ( )

2 22

2 2

33

2 2

1 2 2 1 2 2

.
1 2 2 1 2 2

QP

P Q

QP

P Q

k u u uk u uM A C u
k u uu k u uu

k uk uB C C
k u uu k u uu

 +
 = − + − +
 − + − + 
 
 + − + +
 − + − + 
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Рисунок 3.8. Геометрическая схема №2 конструирования плоской к3п 

 

В обоих точечных уравнениях параметры kP и kQ определяют вид исходных 

дуг к2п. Изменяя эти параметры в пределах от 0 до 1, получим различные 

вариации формы гипотетического профиля крыла летательного аппарата. 

Воспользуемся системой компьютерной алгебры для визуализации полученных 

результатов (табл. 3.2). 

 

Таблица 3.2. Визуализация замкнутых дуг к3п 

№ 
п/п 

Вид дуги 
к2п 

Значения 
параметров 
формы 

Визуализация дуг к3п в зависимости от 
геометрической схемы конструирования 

Схема №1 на рис. 3.7 Схема №2 на рис. 3.8 

1 

Эллипс 0,8Pk =  

  
Парабола 0,5Qk =  

2 

Эллипс 0,9Pk =  

  
Эллипс 0,6Qk =  
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3 

Парабола 0,5Pk =  

  
Эллипс 0,8Qk =  

4 

Гипербола 0,2Pk =  

  
Эллипс 0,8Qk =  

 

В таблице 3.2 приведены лишь некоторые возможные комбинации 

исходных дуг к2п, которые определяются параметрами kP и kQ. Например, для 

описания формы профиля лопатки турбины, крыла летательного аппарата и т.п. 

наиболее подходящими являются следующие пределы изменения инженерных 

дискриминантов: 0,1 0,4Pk≤ ≤  и 0,6 0,9.Qk≤ ≤  

 

3.6. Моделирование дуг обвода высокого порядка гладкости 
Выше были рассмотрены примеры моделирования кривых одного 

отношения, большинство из которых обладают свойствами дуг обвода, т.е. 

имеют касательную в начальной и конечной точках. Модифицируем 

геометрическую схему конструирования дуги квадратичной кривой Безье 

(рис. 2.13), таким образом, чтобы в начальной и конечной точках дуги кривой 

выполнялись соответственно условия:  и  

(рис. 3.9). Для выполнения этого условия отношение соответствующих отрезков 

должно быть постоянным. Примем это отношение в качестве параметра: 

. 

1 2A P P M≡ ≡ ≡ 1 2B Q Q M≡ ≡ ≡

1 1 2 1 1 2 2

2 1 2 1 2 1

AP PP CQ Q Q P M t
AP PC CQ Q B P Q

= = = = =
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Таким образом, получим систему линейных точечных уравнений, решая 

которую поочередно находим точки: , , ,  и . 

 

 

Перейдём от точечных уравнений, которые по своей сути являются 

символьной записью, к системе параметрических уравнений: 

 

Проверим, обладает ли полученная дуга кривой заявленными ранее 

свойствами. Для этого вычислим кривизну полученной дуги кривой в начальной 

и конечной точках. Кривизна в декартовых координатах выражается следующей 

формулой: 

 
( ) ( ) ( )

( )

2 2 2

3
2 2 2 2

,
yz zy zx xz xy yx

k
x y z

− + − + −
=

+ +

        

  
 

1P 2P 1Q 2Q M
2 2

1 2

2 2

1 2

;      ;
1 1 1 1

;     ;
1 1 1 1

t t t tP A C P A C
tt tt tt tt

t t t tQ B C Q B C
tt tt tt tt

= + = +
− − − −

= + = +
− − − −

( ) ( )
3 3

2 .
1 1

t tM A C B C C
tt tt

= − + − +
− −

( ) ( )

( ) ( )

( ) ( )

2

2

2

3 3

3 3

3 3

;
1 1

;
1 1

.
1 1

M A C B C C

M A C B C C

M A C B C C

t tx x x x x x
tt tt

t ty y y y y y
tt tt

t tz z z z z z
tt tt


= − + − + − −

 = − + − + − −


= − + − + − −

Рисунок 3.9. Геометрическая схема конструирования дуги кривой 
2-го порядка гладкости 
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где x , y  и z  – первые производные соответствующих функций 
2Mx , 

2My  и 
2Mz  

по параметру t ; 

x , y  и z  – вторые производные соответствующих функций 
2Mx , 

2My  и 
2Mz  по 

параметру t . 

Выполним расчёт кривизны в начальной и конечной точках. В результате, 

в обоих точках получаем одинаковое значение кривизны равное нулю. Причём 

это значение не зависит от координат точек симплекса . Таким образом, 

полученная дуга обвода в начальной и в конечной точках имеет точки 

спрямления, что может эффективно использоваться при моделировании обводов 

2-го порядка гладкости инвариантных по отношению к геометрической схеме 

моделирования обвода. Т.е. при моделировании обвода появляется возможность 

использования уже известных ранее и хорошо изученных геометрических 

алгоритмов моделирования обвода 1-го порядка гладкости, модернизировав их 

предложенной дугой обвода. 

Предложенный геометрический алгоритм конструирования дуги обвода 

(рис. 3.9) легко обобщить для построения дуг обвода высших порядков гладкости 

(более 2). Таким образом, были получены точечные уравнения дуг обвода 3-го, 

4-го и 5-го порядка гладкости: 

 

 

 

В данном случае индекс при точке  соответствует порядку гладкости 

дуги кривой. Чтобы перейти от точечной формы представления уравнений к 

параметрической, достаточно выполнить покоординатный расчёт, аналогично 

дуге обвода 2-го порядка гладкости. 

ABC

( ) ( )
4 4

3 ,
1 2 1 2

t tM A C B C C
tt tt

= − + − +
− −

( ) ( )
5 5

4 2 2 2 2 ,
1 3 1 3

t tM A C B C C
tt t t tt t t

= − + − +
− + − +

( ) ( )
6 6

5 2 2 2 2 .
1 4 3 1 4 3

t tM A C B C C
tt t t tt t t

= − + − +
− + − +

M
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Выполним визуализации полученных дуг обвода. На рисунке 3.10 

различным цветом показана эволюция дуг обвода с повышением порядка 

гладкости. 

 
Следует отметить, что при увеличении порядка гладкости наблюдается 

некоторое спрямление формы дуги обвода к начальной и к конечной её точкам. 

Однако, этот эффект был ожидаемым, поскольку это свойство заложено в 

геометрическую схему конструирования дуги обвода. 

Как видно из полученных уравнений дуга обвода определяется только 

точками симплекса и текущим параметром . Таким образом, для получения 

корректных результатов при построении обвода необходимо наилучшим 

способом определить точку , а точки  и  в любом случае обеспечат 

необходимые свойства стыковки дуг обвода. 

 

3.7. Моделирование дуги обвода на основе конфигурации Дезарга 
Теорема Дезарга является одной из красивейших теорем проективной 

геометрии, которая наглядно раскрывает принцип двойственности прямых и 

точек. Она гласит, что если в двух треугольниках прямые, соединяющие 

соответственные вершины, проходят через одну точку, то три точки пересечения 

соответственных сторон этих треугольников лежат на одной прямой, и наоборот. 

Теорема Дезарга используется для решения широкого круга задач проективной 

t

C A B

Рисунок 3.10. Визуализация дуг обвода различного 
порядка гладкости 
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геометрии. Её графической интерпретацией является конфигурация Дезарга 

(рис. 3.11), которая нашла широкое применение в теории геометрических 

построений. Например, с её помощью были получены графические алгоритмы 

построения квадрики, заданной девятью точками. Её применяют в области 

автоматизации процессов синтеза компьютерных программ для решения 

геометрических задач методами конструктивного моделирования и для 

построения более сложных конфигураций на её основе. Имеются примеры 

практического использования конфигурации Дезарга в строительстве и 

архитектуре. Также конфигурацию Дезарга можно использовать для 

моделирования пространственных кривых и, в частности, дуг обвода. 

 
Рисунок 3.11. Графическая интерпретация теоремы Дезарга 

 

Дополним конфигурацию Дезарга (рис. 3.11) системой подвижных линий, 

формирующих полный четырёхсторонник MNQJ  в симплексе трёхмерного 

пространства ABCD  (рис. 3.12). 

Одним из способов построения дуг обвода является использование кривых 

одного отношения, примерами которых могут служить кривые Безье. 

Согласованное одним и тем же параметром движение точек обеспечивает 

наличие касательных в начальной и конечной точках дуги обвода. Исходя из 

этого принимаем текущий параметр t в виде единого отношения 

соответствующих направленных отрезков (рис. 3.12): 

 .AP CQ BK PN QJ TRt
AC CB BD PQ QK TS

= = = = = =  (3.5) 
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Рисунок 3.12. Геометрическая схема моделирования дуги обвода на основе 

конфигурации Дезарга 

 

Преобразуем полученные соотношения используя правила преобразования 

простого отношения трёх точек прямой точечного исчисления [3]: 

,tACP CBQ BDK PQN QKJ TSR
t

= = = = = =  

где 1t t= −  — дополнение параметра [ ]0;1t ∈  до 1. 

Используя О-теорему (теорему об отношениях) точечного исчисления [3], 

частным случаем которой является теорема Менелая, для треугольника ACB 

рассечённого прямой PQT получим следующую зависимость: 
2

21 .tACP CBQ BAT ABT
t

⋅ ⋅ = −  = −  

Отсюда определяем точку T: 
2 2 2

2 .
1 2

A T t At BtABT T
T B t t

− −= = −  =
− −

 

Аналогичным образом из треугольника CBD, рассечённого прямой QKS, 

определяем точку S: 
2 2

.
1 2

Ct DtS
t

−=
−

 

Точку R определим из соотношения (3.5): 

 
3 2 2 3

.
1 2

T R At Bt t Ct t Dtt R Tt St R
T S t

− − + −=  = +  =
− −
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Исходя из геометрической схемы (рис. 3.12) текущие точки N и J 

описывают дуги кривой Безье 2-го порядка в симплексах ABC и CBD 

соответственно. Используя соотношения (3.5), получим: 

2 2

2 2

2 .

2 .

AP CQ PN t N At Ctt Bt
AC CB PQ
CQ BK QJ t J Ct Btt Dt
CB BD QK

= = =  = + +

= = =  = + +
 

Переопределим точку J в симплексе плоскости SNT: 

( ) ( ) ,J JJ S T p N T q T= − + − +  

где J
JQp
SQ

=  и J
JRq
NR

=  (рис. 3.12). 

Определим текущую точку дуги обвода M, как результат пересечения 

прямых SN и TJ. Для этого сформируем подвижный треугольник переменной 

площади TJM, определяемый движением точки M по прямой SN с помощью 

параметра λ: M S Nλ λ= + , где 1λ λ= − . Далее определим значение параметра 

λ, при котором площадь переменного треугольника TJM будет равна нулю, и он 

выродится в прямую. В соответствии с S-теоремой (теорема о площадях) 

точечного исчисления [3], получим: 

1
0 0 .

0 0 1

.

j j j j
j

j j

j j

j j j j

p q p q
q

p q

p q
M S N

p q p q

λ λ λ
− −

=  =
+

= +
+ +

 

Параметры pj и qj определим, исходя из инвариантных свойств простого 

отношения трёх точек прямой относительно параллельного проецирования: 

2 1,   ,j j
J Q J R tp t q
S Q N R t

− −= = − = =
− −

 

где J, S, N, R – текущие точки, уравнения которых были получены выше; 

Q = (B – C)t + C – текущая точка, которая определяется из соотношения 

(3.5). 
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В результате, после подстановок и преобразований, получим: 

( )
2 2

2 1
.

2 2 1 2 2 1
t t tM S N
t t t t

−
= +

− + − +
 

После замены точек S и N определим искомое точечное уравнение дуги 

обвода в симплексе ABCD : 

 
3 2 2 3

2 .
2 2 1

At Bt t Ct t DtM
t t

+ + +=
− +

 (3.6) 

Или в координатной форме для трёхмерного пространства: 
3 2 2 3

2

3 2 2 3

2

3 2 2 3

2

2 2 1

.
2 2 1

2 2 1

A B C D
M

A B C D
M

A B C D
M

x t x t t x t t x tx
t t

y t y t t y t t y ty
t t

z t z t t z t t z tz
t t

 + + += − +
+ + + = − +

 + + += − +

 

Как видно из уравнения (3.6), дуга обвода, полученная на основе 

конфигурации Дезарга, зависит только от параметра t и точек трёхмерного 

симплекса ABCD (и соответственно их координат), который можно 

рассматривать как систему двух скрещивающихся прямых AC и DB. Эти прямые 

являются касательными дуги обвода. Исходя из этого, полученная дуга обвода 

является пространственной кривой двоякой кривизны. Визуализация 

полученной дуги представлена на рис. 3.13 (красным цветом показан исходный 

симплекс, синим – дуга обвода). 

 

Рисунок 3.13. Визуализация пространственной дуги обвода, полученной на 

основе конфигурации Дезарга 
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Числитель точечного уравнения (3.6) является симметричным выражением 

и очень похож на точечное уравнение дуги кривой Безье 3-го порядка 

( )3 2 2 33 3M At Bt t Ct t Dt= + + +  за исключением двух постоянных 

коэффициентов равных 3, которые определяются биномом Ньютона. 

Полученная дуга обвода, как и другие геометрические объекты, 

параметризованные на основе алгоритмов проективной геометрии, 

демонстрирует высокую устойчивость к совпадению точек. Например, в случае 

совпадения точек C B≡  получим плоскую дугу обвода, визуализация которой 

приведена на рис. 3.14: 
3 3

2

3 3 3 3

2 2

3 3

2

2 2 1

.
2 2 1 2 2 1

2 2 1

A B D
M

A B D
M

A B D
M

x t x tt x tx
t t

At Btt Dt y t y tt y tM y
t t t t

z t z tt z tz
t t

 + += − +
+ + + +=  =− + − +

 + += − +

 

 

Рисунок 3.14. Визуализация плоской дуги обвода, полученной на основе 

конфигурации Дезарга 

 

Следует отметить, что полученная плоская дуга обвода на интервале 

изменения параметра t от 0 до 1 не содержит точек перегиба. Но если необходимо 
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смоделировать плоскую дугу обвода с точкой перегиба, то достаточно выбрать 

координаты точек в уравнении (3.6) таким образом, чтобы все точки 

принадлежали одной плоскости, но не совпадали друг с другом, а касательные 

были направлены в разные стороны. 

Совпадение начальной и конечной точек A D≡ , даёт замкнутую дугу 

обвода (рис. 3.15): 

( )

( )

( )

( )

2 2

2

2 2 2 2

2 2

2 2

2

1 3
2 2 1

1 3 1 3
.

2 2 1 2 2 1
1 3

2 2 1

A B C
M

A B C
M

A B C
M

x tt x t t x t t
x

t t
A tt Bt t Ct t y tt y t t y t t

M y
t t t t

z tt z t t z t t
z

t t

 − + +
= − +

− + + − + +
=  =− + − +

 − + +
= − +

 

 

Рисунок 3.15. Визуализация плоской замкнутой дуги обвода, полученной на 

основе конфигурации Дезарга 

 

Значение параметра t = 0 определяет начальную точку дуги обвода A, а t = 

1 – конечную точку дуги обвода D. При t = 0,5 дуга обвода проходит через центр 

тяжести G тетраэдра ABCD: 

.
4

A B C DG + + +=  
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Исследуем знаменатель точечного уравнения (3.6). Дискриминант 

квадратного уравнения 2t2 – 2t + 1 = 0 равен – 4. Это значит, что уравнение имеет 

только комплексные корни. Поскольку интервал изменения параметра t лежит в 

пределах от 0 до 1, то в его пределах дуга обвода является непрерывной. 

Продифференцируем точечное уравнение (3.6) по параметру t: 

( ) ( )

( ) ( )

4 3 2 4 3 2

2 22 2

4 3 2 4 3 2

2 22 2

2 4 3 2 1 2 4 5 2
2 2 1 2 2 1

2 4 5 4 1 2 4 3 .
2 2 1 2 2 1

dM t t t t t t t tA B
dt t t t t

t t t t t t tC D
t t t t

− + − + − − + − += + +
− + − +

− + − + − ++ +
− + − +

 

При значении параметра t = 0 получим 0dM C A
dt

= − ≠ , а при t = 1 – 

0dM D B
dt

= − ≠ . Промежуточные значения параметра t дают линейную функцию 

от исходных точек ( ), , ,dM f A B C D
dt

=  и их координат в случае покоординатного 

расчёта (для x: ( ), , ,M
A B C D

dx f x x x x
dt

=  и т.д.). Т.е. на интервале изменения 

параметра от 0 до 1 кривая является гладкой. Обратим внимание, что в обоих 

случаях значения дифференцируемой функции определяется двумя точками (A и 

C при t = 0, D и B при t = 1), которые определяют касательные в начальной и 

конечной точках дуги обвода. Поскольку касательная, также как и простое 

отношение трёх точек прямой, обладает инвариантными свойствами 

относительно параллельного проецирования, то все дифференциальные свойства 

кривой в начальной и конечной точках сохраняются в случае проецирования 

полученной дуги обвода на любую плоскость. 

Определим вторую производную точечного уравнения дуги обвода (3.6) по 

параметру t : 

( ) ( ) ( ) ( )
2 3 3 3 2 3 2

3 3 3 32 2 2 2 2

4 6 2 4 6 2 4 12 6 4 12 6 .
2 2 1 2 2 1 2 2 1 2 2 1

d M t t t t t t t t t tA B C D
dt t t t t t t t t

− + − − + − + − − += + + +
− + − + − + − +
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При значении параметра t = 0 получим 
2

2 2 2 0d M B A
dt

= − ≠ , а при t = 1 – 

2

2 2 2 0d M C D
dt

= − ≠ . По аналогии с определением первой производной точечного 

уравнения (3.6) при начальном и конечном значениях текущего параметра t 

значения дифференцируемой функции определяется двумя точками. Только эти 

точки умножены на некоторое число n, в данном случае равное 2. Эти пары точек 

однозначно определяют прямые линии, которые можно использовать для 

стыковки дуг обвода по 2-му порядку гладкости. Таким образом, используя 

полученные линейные зависимости можно согласовать координаты точек 

предыдущей и последующей дуги обвода, добившись 2-го порядка гладкости. 

Если дифференцировать точечное уравнение дуги обвода (3.6) дальше, то 

получится интересная закономерность. Для четных порядков производных 

начальное и конечное значения параметра t обеспечивают пары точек симплекса, 

умноженные на n, по аналогии с дифференцированием 2-го порядка. А для 

нечётных порядков производных формируется комбинация точек, из которой 

можно выделить точечную формулу параллельного переноса и тогда также 

сформировать пару точек симплекса для согласования со следующим сегментом 

обвода. Таким образом, вырисовывается геометрический алгоритм 

моделирования обводов высоких порядков гладкости, разработка которого 

является перспективой дальнейших исследований. 
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ГЛАВА 4. МОДЕЛИРОВАНИЕ ИНТЕРПОЛЯЦИОННЫХ КРИВЫХ 
 

Моделирование интерполяционных кривых с помощью единого 

аналитического выражения, справедливого на всей области определения, 

представляет собой классический математический подход. В основе 

непрерывных методов, таких как интерполяционный полином Лагранжа или 

Ньютона, лежит идея построения единой функции (как правило, полинома 

высокой степени), глобально связывающей все узловые точки. Их ключевое 

преимущество – бесконечная гладкость (C∞) на всем интервале и простота 

вычисления значения в любой точке по одному универсальному уравнению. 

Эффективность и область применения глобальных непрерывных методов 

наиболее ярко проявляется в задачах, где количество опорных точек невелико, и 

где предъявляются высокие требования к аналитичности результирующей 

функции. Их главная сила – в точном представлении функциональных 

зависимостей. 

Типичные задачи, где непрерывная интерполяция незаменима или 

высокоэффективна, включают: 

1. Системы автоматизированного проектирования (CAD) и 

геометрического моделирования, для которых интерполяционные кривые 

являются основным формообразующим инструментом. 

2. Аналитическое решение и моделирование в физике и технике. 

Определение единого уравнения для зависимостей, заданных таблично 

результатами точных экспериментов или расчётов (например, зависимость 

теплоёмкости от температуры для простого вещества, характеристические 

кривые элементов), с последующим использованием этого уравнения в 

аналитических преобразованиях, дифференцировании или интегрировании. 

3. Создание математических справочников и эталонных зависимостей. 

Построение гладких аппроксимаций сложных трансцендентных функций или 

таблиц фундаментальных констант для их эффективного вычисления (как это 

делалось исторически для логарифмических и тригонометрических таблиц). 
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4. Задачи с малым числом узлов (N < 7-10). Когда точек немного, простота 

и гладкость единого полинома перевешивают его потенциальные недостатки. 

Например, интерполяция траектории небольшого космического зонда по данным 

нескольких целевых точек. 

5. Символьные (аналитические) вычисления в CAS (Computer Algebra 

Systems). При проведении символьных операций (дифференцирование, 

нахождение корней, вычисление пределов) наличие единого аналитического 

выражения принципиально важно. 

6. Фундаментальные научные исследования. В случаях, когда 

теоретическая модель предсказывает именно полиномиальную или другую 

простую функциональную зависимость, глобальная интерполяция служит 

инструментом для наглядного сравнения теории с ограниченным набором 

экспериментальных данных. 

Параметризации интерполяционных кривых, построенные на 

конструктивных геометрических алгоритмах и параметризованные с помощью 

математического аппарата «Точечное исчисление», обладают высокой 

устойчивостью к изменению исходных данных и позволяют сохранить 

геометрические свойства полученных кривых, которые могут быть эффективно 

использованы в дальнейшем. Особенно это важно систем автоматизированного 

проектирования и геометрического моделирования. Исходя из этого развитие 

методов и алгоритмов моделирования интерполяционных кривых в точечном 

исчислении является важной научной задачей, имеющей большое теоретическое 

и прикладное значение. 

 

4.1. Моделирование интерполяционной кривой 2-го порядка с помощью 
инженерного дискриминанта 

Основу определения интерполяционных кривых в точечном исчислении 

составляет метод замены симплекса в уравнении исходной кривой. В качестве 

примера рассмотрим способ определения интерполяционной кривой 2-го 

порядка, параметризованной в пункте 2.1.6 с помощью инженерного 
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дискриминанта. Для этого преобразуем с помощью замены симплекса это 

уравнение дуги кривой 2-го порядка в интерполяционную кривую, проходящую 

через 3 наперёд заданные точки: A , K  и B  (рис. 2.21). 

В соответствии с геометрической схемой конструирования дуги кривой 2-

го порядка (рис. 2.21), определим точку C  из следующего соотношения: 

.C
C

KCk Ck K K k
K C

= → = −  

Далее подставим в уравнение точку CK : 

1 1 .
2 2 2

A B k k kC K A B K
k k k k k

+= − = − − +  

Произведём замену симплекса в уравнении (2.97), подставив полученное 

уравнение вместо точки C : 

( ) ( )
( )

( ) ( )
( )2 2

1 2 2 1
.

1 2 2 1 2 2
ku u ku u

M A K B K K
k u uu k u uu

− −
= − + − +

− + − +
 

Переходя от точечных уравнений к параметрическим для 3-мерного 

пространства, получим: 

( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

2 2

2 2

2 2

1 2 2 1
.

1 2 2 1 2 2
1 2 2 1

.
1 2 2 1 2 2

1 2 2 1
.

1 2 2 1 2 2

M A K B K K

M A K B K K

M A K B K K

ku u ku u
x x x x x x

k u uu k u uu

ku u ku u
y y y y y y

k u uu k u uu

ku u ku u
z z z z z z

k u uu k u uu

 − −
= − + − +

− + − +
 − − = − + − +

− + − +
 − − = − + − +
 − + − +

 

Следует отметить, что геометрические свойства дуги кривой, несмотря на 

замену точек в уравнении, полностью сохранились и при 1
2

k =  получим дугу 

параболы, при 1
2

k >  – дугу эллипса, а при 1
2

k <  – дугу гиперболы. Такой подход 

при моделировании многопараметрических геометрических объектов позволяет 

регулировать кривизну, как направляющих, так и образующих изменением 

значения параметра [ ]0;  1k ∈ . 
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В качестве примера, определим точечное уравнение дуги параболы 2-го 

порядка. Для этого принимаем 1
2

k = . После некоторых преобразований 

получим: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 2 2 1 .

1 2 2 1 .
1 2 2 1 .

1 2 2 1 .

M A K B K K

M A K B K K

M A K B K K

M A K u u B K u u K

x x x u u x x u u x

y y y u u y y u u y

z z z u u z z u u z

= − − + − − +

= − − + − − +


= − − + − − +
 = − − + − − +

  

Таким образом, полученное точечное уравнение полностью совпадает с 

точечным уравнением параболической дуги кривой 2-го порядка с 

несобственной точкой (2.63) из раздела 2.1.3.2. Только используются разные 

обозначения точек симплекса. Это говорит не только об инвариантных свойствах 

точечного исчисления как аппарата геометрического моделирования дуг 

алгебраических кривых, но и том, что полученные уравнения описывают одну и 

ту же параболическую дугу в одном и том же симплексе, в одной и той же 

параметризации, и геометрические свойства обеих дуг являются 

взаимозаменяемыми. 

 

4.2. Метод моделирования интерполяционных кривых, на основе кривых 
Безье 

Алгебраические кривые, проходящие через наперёд заданные точки, 

полученные на основе кривых Безье, являются достаточно простым и гибким 

инструментом многомерной интерполяции и аппроксимации. Необходимость 

определения таких кривых заключается в том, что при моделировании 

многофакторных процессов для каждой отдельной задачи приходится решать 

системы линейных алгебраических уравнений (СЛАУ) при определении 

искомого уравнения. Чтобы получить универсальный подход к моделированию 

многофакторных процессов необходимо получить такие уравнения дуг 

алгебраических кривых, в которые можно подставлять любые значения 
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координат точек и сразу получать нужный результат. Для этого необходимо 

процесс решения СЛАУ использовать непосредственно на стадии 

моделирования кривых. 

В работе [14] во время исследований геометрических свойств 

алгебраических кривых был предложен способ определения дуг кривых 3-го и 4-

го порядка, проходящих соответственно через 4 и 5 наперёд заданных точек. 

Дальнейшее развитие этот метод получил в работе [8]. Обобщение этого метода 

для моделирования кривой n − го порядка, которая проходит через 1n +  наперёд 

заданных точек, на основе кривых Безье, было выполнено в работе [15]. При этом 

в описании метода фигурировал термин «полиномы Бернштейна», а не «кривые 

Безье». Следует отметить, что в контексте проведенных исследований 

приведенные выше термины являются тождественными. 

Рассмотрим обобщение предложенного способа в единый метод 

моделирования дуг кривых, проходящих через наперёд заданные точки, на 

основе кривых Безье. Пусть задана ломаная линия 1 2 1... ,n nA A A A + . Тогда дуга 

кривой n − го порядка имеет следующее точечное уравнение: 

 

1 1 2 2 2 1 1
1 2 3 1

1
0

...

,

n n n n n n
n n n n n

n
i n i i

i n
i

M A t A C t t A C t t A C tt A t

A C t t

− − − −
+

−
+

=

= + + + + + =

=
 (4.1) 

где M − текущая точка дуги кривой; 
1,..., i
n nA A  − исходные точки, определяющие форму дуги кривой; 
1,..., i
n nC C  − коэффициенты Бернштейна; 

t  − текущий параметр; 

1t t= −  − дополнение параметра до 1. 

Тогда исходное точечное уравнение кривых, полученных на основе кривых 

Безье, которые в общем случае находятся в пространстве размерности n  и 

являются кривыми ( )1n − -й кривизны, могут быть записаны в следующем виде: 

 ( )1
0

! .
! !

n
n i i

i
i

nM A t t
i n i

−
+

=

=
−  (4.2) 
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Использовав равномерное распределение текущего параметра jt
n

= , 

получим: 

 
( )1 1

0

! .
! !

n i in

j i
i

n n j jM A
i n i n n

−

+ +
=

−   =    −    
  (4.3) 

Переопределим точки ломаной линии 1 2 1... ,n nA A A A +  через точки 

1 2 1... ,n nM M M M + , которые принадлежат дуге кривой, определенной с помощью 

уравнения (4.3), пропорционально изменяя значение параметра t  от 0  до 1. В 

результате получим систему 1n +  линейных алгебраических уравнений вида: 

 ( ) ( ) ( ) 1 1
0

! ,    1,2,..., 1.
! !

n
n i i n

i j
i

n n j j A n M j n
i n i

−
+ +

=

− = = +
−  (4.4) 

Решив эту систему уравнений методом Крамера и подставив в исходное 

уравнение (4.2), получим уравнение дуги кривой, проходящей через наперёд 

заданные точки 1 2 1... ,n nM M M M + . 

Полученная дуга кривой представлена в точечной (т.е. в символьной 

форме, для которой вместо координат используются непосредственно точки) 

форме. Для практического использования полученных уравнений необходимо 

выполнить покоординатный расчёт. При этом одно точечное уравнение 

заменяется системой параметрических уравнений, которые представляют собой 

аналитическое описание проекций текущей точки она оси глобальной системы 

координат. Здесь следует отметить очень важную отличительную особенность 

полученного уравнения. Для точечных уравнений принадлежность 

геометрического объекта к пространству конкретной размерности определяется 

суммой функций от параметра t , которая обязательно должна быть равна 1. 

Поскольку функции от параметра t  определяются биномом Ньютона, который 

раскладывается для параметра t  и его дополнения до 1, то условие 

принадлежности дуги кривой конкретному пространству будет выполняться вне 

зависимости от размерности пространства. Иными словами, полученные 
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параметрические уравнения дуги кривой могут быть использованы для 

пространства любой размерности. 

Другим важным свойством полученной дуги кривой является равномерное 

распределение параметра, изначально заложенное в метод определения дуги 

кривой, проходящей через наперёд заданные точки. При этом для каждой 

конкретной координатной оси, имеющей равномерное распределение координат 

исходных точек, справедлива линейная зависимость между натуральным 

значением фактора, принадлежащего i − й оси проекций и текущим параметром: 

 ,i i ix nl t b= +  (4.5) 

где ix  − i − я ось проекций глобальной системы координат; 

n  − порядок дуги кривой; 

ib  − начальное значение фактора влияния, соответствующее i − й оси 

проекций; 

il  − шаг равномерного распределения проекции исходных точек на i −ю 

ось. 

Это свойство алгебраических кривых, проходящих через наперёд заданные 

точки, в значительной мере сокращает объём необходимых вычислений при 

моделировании многопараметрических геометрических объектов, позволяя 

рассматривать их на регулярной сети точек. Сама методика при этом носит 

универсальный характер и без внесения каких-либо изменений, может в полном 

объёме использоваться как для регулярной, так и для нерегулярной сети точек. 

Рассмотрим подробнее использование предложенного метода для 

моделирования дуг алгебраических кривых, проходящих через наперёд заданные 

точки, различного порядка. 
 

4.3. Моделирование интерполяционной кривой 2-го порядка 
В точечном исчислении дуга кривой Безье 2-го порядка, учитывая 

одинаковые свойства и уравнения, получила название параболы 2-го порядка. В 
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соответствии с (2.58) парабола 2-го порядка, определяется следующим 

уравнением: 

 2 22 ,M At Ctt Bt= + +  (4.6) 

где 1 .t t= −  

 
Смоделируем дугу параболы 2-го порядка, проходящую через наперед 

заданные точки М1, М2 и М3 (рис. 4.1). При значении параметра 0t =  кривая будет 

проходить через точку А≡М1 – начало дуги параболы, при 1t =  кривая будет 

проходить через точку В≡М3 – конец дуги параболы. Принимаем значение 1
2

t =  

при прохождении текущей точки через М2 и получаем следующую систему 

уравнений: 

 
1

2

3

,
2 4 ,

.

A M
A C B M
B M

=
 + + =
 =

 (4.7) 

Решим систему уравнений (4.7) методом Крамера. Поскольку первая точка 

A  и последняя точка B  уже известны, достаточно определить только 

промежуточную точку C . Для этого составляем и решаем следующие 

определители: 

 
1

2 1 2 3

3

1 0 0 1 0
1 2 1 2.    1 4 1 4 .
0 0 1 0 1

C

M
M M M M
M

Δ = = Δ = = − + −  (4.8) 

Рисунок 4.1. Моделирование интерполяционной кривой 2-го порядка 
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Определим точку С через точки М1, М2 и М3: 

 1 2 3
1 12 .
2 2

CC M M MΔ= = − + −
Δ

 (4.9) 

Подставив значения точек A , B  и C  в уравнение (4.6), получим уравнение 

дуги параболы 2-го порядка, проходящую через 3 наперёд заданные точки М1, 

М2 и М3: 

 ( ) ( )
( ) ( )

2 2
1 1 2 3 3

2 2
1 2 3

1 2 3

1 12 2
2 2

4

1 2 4 2 1 .

M M t M M M tt M t

M t tt ttM M t tt

M t t ttM M t t

 = + − + − + = 
 

= − + + − =

= − + + −

 (4.10) 

Следует отметить, что уравнение (4.10) полностью совпадает с точечным 

уравнением параболической дуги кривой 2-го порядка с несобственной точкой 

(2.63) из раздела 2.1.3.2. Отсюда можно сделать вывод, об одинаковых 

геометрических свойствах полученных кривых, которые представляют частный 

случай дуги параболы 2-го порядка. Кроме того, можно выдвинуть гипотезу о 

том, что каждая дуга кривой, полученная подобным методом, является частным 

случаем параболы n –го порядка. 

Переходя к системе параметрических уравнений для реализации 

параллельных вычислений, получим: 

( ) ( )
( ) ( )
( ) ( )

1 2 3

1 2 3

1 2 3

1 2 4 2 1

1 2 4 2 1 .

1 2 4 2 1

M M M M

M M M M

M M M M

x x t t ttx x t t

y y t t tty y t t

z z t t ttz z t t

 = − + + −
 = − + + −
 = − + + −

 

 

4.4. Моделирование интерполяционной кривой 3-го порядка 
Аналогичным образом переопределим дугу кривой Безье 3-го порядка, 

проходящую через наперед заданные точки 1 2 3 4,  ,  ,  M M M M  (рис. 4.2). 

Дуга параболы 3-го порядка, как дуга кривой Безье 3-го порядка, в 

соответствии с (3.4) определяется следующим точечным уравнением: 

 3 2 2 3
1 23 3 ,M At C t t C tt Bt= + + +  (4.11) 
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где 1t t= − . 

 
Следует отметить, что при значении параметра 0t =  кривая проходит через 

точку 1A M≡  – начало дуги кривой Безье, при 1t =  – через точку 4B M≡  – конец 

дуги кривой Безье. Принимаем значение параметра 1
3

t =  при прохождении 

текущей точки через точку 2M  и значение 2
3

t =  параметра при прохождении 

через точку 3M . Составим следующую систему точечных уравнений: 

 

1

1 2 2

1 2 3

4

8 12 6 27
6 12 8 27

A M
A C C B M

A C C B M
B M

=
 + + + =
 + + + =
 =

 (4.12) 

Решим эту систему точечных уравнений методом Крамера относительно 

неизвестных 1 2,  ,  ,  A C C B . Для этого сначала рассчитываем главный 

определитель системы уравнений (4.12): 

 

1 0 0 0
8 12 6 1

108.
1 6 12 8
0 0 0 1

Δ = =  (4.13) 

Первое и последнее уравнение в системе (4.12) уже решены, поэтому 

рассмотрим определители, которые относятся ко второму и третьему элементам 

системы. 

Определим точку 1C  через 1 2 3 4,  ,  ,  M M M M : 

Рисунок 4.2. Моделирование интерполяционной кривой 3-го порядка 
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1

2
1 1 2 3 4

3

4

1 1 2 3 4

1 0 0
8 27 2 1

90 27 12 27 6 36 .
1 27 4 8
0 0 1

5 3 13 .
6 2 3

M
M

M M M M
M

M

C M M M M

Δ = = − + × − × +

= − + − +

 (4.14) 

Аналогично определим точку 2C : 

 

1

2
2 1 2 3 4

3

4

2 1 2 3 4

1 0 0
8 4 27 1

36 27 6 27 12 90 .
1 2 27 8
0 0 1

1 3 53 .
3 2 6

M
M

M M M M
M

M

C M M M M

Δ = = − × + × −

= − + −

 (4.15) 

Аналогично, подставив уравнения (4.13), (4.14) и (4.15) в уравнение (4.12) 

и выполнив определенные преобразования, получим уравнение дуги параболы 

3-го порядка, проходящей через 4 наперёд заданные точки 1 2 3 4,  ,  ,  M M M M : 

 

( ) ( )
( ) ( )

3 2
1 1 2 3 4

2 3
1 2 3 4 4

3 2 2 2 2
1 2

2 2 2 2 3
3 4

5 3 13 3
6 2 3

1 3 53 3
3 2 6

2,5 9 4,5

4,5 9 2,5 .

M M t t t M M M M

M M M M tt M t

M t t t tt M t t tt

M t t tt M t t tt t

 = + − + − + + 
 

 + − + − + = 
 

= − + + − +

+ − + + − +

 (4.16) 

Путём преобразований уравнение (4.16) можно привести к более 

компактному виду: 

 ( ) ( ) ( )( )2 3
1 4

9 2 3 3 12 9 .
2 2

tt M t M tttM M t M t
− + −−= + +  (4.17) 

В соответствии с (4.5) в случае равномерного распределения точек 

1 2 3 4,  ,  ,  M M M M  по оси Ox , получим следующую линейную зависимость между 

координатой x  и параметром t : 

( )3 1 ,x b l t= + +  
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где b  − начальное значение, соответствующее оси проекций Ox ; 

l  − шаг равномерного распределения проекций исходных точек на оси 

Ox . 

Для точечного исчисления оси глобальной системы координат в общем 

случае являются равноценными. Исходя из этого, аналогичную линейную 

зависимость можно получить и для оси Oy . В случае, когда проекции точек iM  

расположены равномерно и по оси Ox  и по оси Oy , получим отрезок прямой 

1 4M M . 

Переходя к системе параметрических уравнений для реализации 

параллельных вычислений, получим: 

( ) ( ) ( )( )

( ) ( ) ( )( )

( ) ( ) ( )( )

2 3

1 4

2 3

1 4

2 3

1 4

9 2 3 3 12 9
2 2

9 2 3 3 12 9 .
2 2

9 2 3 3 12 9
2 2

M M
M M M

M M
M M M

M M
M M M

tt x t x tttx x t x t

tt y t y ttty y t y t

tt z t z tttz z t z t

 − + −− = + +

 − + −− = + +

 − + −− = + +


 

 

4.5. Моделирование интерполяционной кривой 4-го порядка 
Рассмотрим проведение дуги кривой Безье 4-го порядка через 5 наперед 

заданных точек. Точечное уравнение дуги кривой Безье 4-го порядка имеет вид: 

 4 3 2 2 3 4
1 2 34 6 4 .M At C t t C t t C tt Bt= + + + +  (4.18) 

Нужно переопределить точки, чтобы дуга кривой Безье 4-го порядка 

проходила через заданные точки 1 2 3 4 5,  ,  ,  ,  M M M M M . По аналогии с дугой 

кривой Безье 3-го порядка при значении параметра 0t =  кривая проходит через 

точку 1A M≡ , а при 1t =  – через точку 5B M≡ . Примем значение параметра 1
4

t =  

при прохождении текущей точки дуги через точку 2M , соответственно 1
2

t =  при 
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прохождении через точку 3M  и 3
4

t =  при прохождении через точку 4M . 

Подставляя принятые значения параметров и уже известные точки в уравнение 

(4.18), получим следующую систему уравнений: 

 

2 1 1 2 3 5

3 1 1 2 3 5

4 1 1 2 3 5

81 27 27 3 1
256 64 128 64 256
1 1 3 1 1

16 4 8 4 16
1 3 27 27 81

256 64 128 64 256

M M C C C M

M M C C C M

M M C C C M

 = + + + +

 = + + + +

 = + + + +

 (4.19) 

Перенесем все известные точки в левую часть уравнения и проведем 

некоторые преобразования: 

 
2 1 1 2 3 5

3 1 1 2 3 5

4 1 1 2 3 5

256 81 108 54 12
16 4 6 4
256 108 54 12 81

M M C C C M
M M C C C M

M M C C C M

= + + + +
 = + + + +
 = + + + +

 (4.20) 

Решив систему точечных уравнений (4.20) методом Крамера относительно 

неизвестных 1 2 3,  ,  C C C  и подставив результаты в уравнение (4.18), после 

преобразований получим уравнение дуги кривой Безье 4-го порядка, 

проходящей через 5 наперёд заданных точек: 

 ( )

4 3 2 2 3 3 2 2 3
1 2

3 2 2 3 3 2 2 3
3 4

3 2 2 3 4
5

13 13 64 1616
3 3 3 3

16 6412 40 12 16
3 3

13 13 .
3 3

M M t t t t t tt M t t t t tt

M t t t t tt M t t t t tt

M t t t t tt t

   = − + − + − + +   
   

 + − + − + − + + 
 

 + − + − + 
 

 (4.21) 

 

4.6. Моделирование интерполяционной кривой 5-го порядка 
Точечное уравнение дуги кривой Безье 5-го порядка имеет следующий вид: 

 5 4 3 2 2 3 4 5
1 2 3 45 10 10 5 ,M At C t t C t t C t t C tt Bt= + + + + +  (4.22) 

Принимаем равномерное распределение точек, установим следующее 

соответствие между точками iM  и значениями параметра t . При 0t =  имеем 
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точку 1M A≡ , при 1
5

t =  имеем точку 2M , при 2
5

t =  имеем точку 3M , при 3
5

t =  

имеем точку 4M , при 4
5

t =  имеем точку 5M  и при 1t =  имеем точку 6M B≡ . 

Подставив значения параметра t  в уравнение (4.22), получим: 

1
5 4 3 2 2 3 4 5

2 1 2 3 4

5 4 3 2 2 3

3 1 2 3

,

4 4 1 4 1 4 1 4 1 15 10 10 5 ,
5 5 5 5 5 5 5 5 5 5

3 3 2 3 2 3 25 10 10 5
5 5 5 5 5 5 5

M А

M A C C C C B

M A C C C

=

                  = + + + + +                  
                  

             = + + + +             
             

4 5

4

5 4 3 2 2 3 4 5

4 1 2 3 4

5 4 3

5 1 2

3 2 2 ,
5 5 5

2 2 3 2 3 2 3 2 3 35 10 10 5 ,
5 5 5 5 5 5 5 5 5 5

1 1 4 1 45 10
5 5 5 5 5

C B

M A C C C C B

M A C C

    +    
    

                  = + + + + +                  
                  

         = + +         
         

2 2 3 4 5

3 4

6

1 4 1 4 410 5 ,
5 5 5 5 5

.

C C B

M B













         + + +         

        
 =

 

Перенесем все известные точки в левую часть уравнения и проведем 

некоторые преобразования. 

 

1

2 1 2 3 4

3 1 2 3 4

4 1 2 3 4

5 1 2 3 4

6

,
3125 1024 1280 640 160 20 ,
3125 243 810 1080 720 240 32 ,
3125 32 240 720 1080 810 243 ,
3125 20 160 640 1280 1024 ,

.

M А
М A C C C C B
М A C C C C B
M A C C C C B
M A C C C C B

M B

=
 = + + + + +
 = + + + + +
 = + + + + +
 = + + + + +


=

 (4.23) 

Решим систему линейных уравнений (4.23) методом Крамера 

относительно неизвестных точек 1 2 3 4,  ,  ,  C C C C . 

1 1 2 3 4 5 6

2 1 2 3 4 5 6

3 1 2 3 4 5 6

4 1 2 3 4 5 6
4

77 10 5 15 5 .
60 3 4 5

269 145 295 115 185 77 .
240 24 24 12 48 120
77 185 115 295 145 269 .

120 48 12 24 24 240
1 5 10 775 5 .
5 4 3 60

C M M M M M M

C M M M M M M

C M M M M M M

C M M M M M M

= − + − + − +

= − + − + −

= − + − + − +

= = − + − + −Δ
Δ
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Подставим значения точек 1 2 3 4,  ,  ,  C C C C  в уравнение (4.22), получим 

уравнение дуги кривой Безье 5-го порядка, проходящей через 6 наперёд 

заданных точек: 

 

5 4
1 1 2 3 4 5 6

3 2
1 2 3 4 5 6

2 3
1 2 3 4 5 6

1 2 3 4 5

10 5 15 5 5
4 5

145 295 115 185 7710
24 24 12 48 120

77 185 115 295 145 26910
120 48 12 24

77
60 3

26

24 240
1 5 105 5 5
5 4

2

3

9
40

M M t M M M M M M t t

M M M M M M t t

M M M M M M t t

M M M M M

 = + + − + − + +  
 + − + − + − +  
 + − + − + − + +  

+ − + − +

−

− 4 5
6 6

77 .
60

M tt M t  +  

 (4.24) 

Для удобства использования выделим вы уравнении узлы интерполяции 

iM : 

 

5 4 3 2 2 3 4
1

4 3 2 2 3 4
2

4 3 2 2 3 4
3

4 3 2 2 3 4
4

4 3 2
5

77
12

1450 1850 2525
24 48 4
295

77 26

0 1150 5

9
1

025
24 12 3

50 1150 2950 25
12 24

25 185

2 2

0 1
4 48

4

3

M M t t t t t t t tt

M t t t t t t tt

M t t t t t t tt

M t t t t t t tt

M t t t t

 = + − + + 
 

 + − + − + 
 
 + − + − + + 
 
 + − + − + 
 

+ − + −

−

2 3 4

4 3 2 2 3 4 5
6

450 25
24

77 269 77 .
12 24 12

t t tt

M t t t t t t tt t

 + + 
 
 + − + − + 
 

 (4.25) 

 

4.7. Моделирование интерполяционной кривой 6-го порядка 
Точечное уравнение дуги кривой Безье 6-го порядка имеет следующий вид: 

 6 5 4 2 3 3 2 4 5 6
1 2 3 4 56 15 20 15 6 ,AM At C t t C t t C t t C t t C tt Bt= + + + + + +  (4.26) 

где 1t t= − . 

Поскольку все 7 точек расположены равномерно, установим следующее 

соответствие между точками iM  и значениями параметра t . При 0t =  имеем 
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точку 1M A≡ , при 1
6

t =  имеем точку 2M , при 1
3

t =  имеем точку 3M , при 1
2

t =  

имеем точку 4M , при 2
3

t =  имеем точку 5M , при 5
6

t =  имеем точку 6M  и при 

1t =  имеем точку 7M B≡ . 

Значения параметра t  для определения точек 1M  и 7M  уже известны, 

поэтому определим, при каких значениях iC  – коэффициентов уравнение (4.26), 

дуга кривой будет проходить через точки 2 3 4 5 6,  ,  ,  ,  M M M M M . Для этого 

подставим значения параметра t , которые соответствуют точкам iM  в уравнение 

(4.26). 
6 5 4 2 3 3

2 1 2 3

2 4 5 6

4 5

6 5 4 2

3 1 2 3

5 5 1 5 1 5 16 15 20
6 6 6 6 6 6 6

5 1 5 1 115 6 ,
6 6 6 6 6

2 2 1 2 1 26 15 20
3 3 3 3 3

M A C C C

C C B

M A C C C

             = + + + +             
             

        + + +        
        

         = + + +         
         

3 3

2 4 5 6

4 5

6 6 6 6

4 1 2 3

6 6 6

4 5

6 5

5 1

1
3 3

2 1 2 1 115 6 ,
3 3 3 3 3

1 1 1 16 15 20
2 2 2 2

1 1 115 6 ,
2 2 2

1 1 26
3 3 3

C C B

M A C C C

C C B

M A C

    +   
   

        + + +        
        

       = + + + +       
       

     + + +     
     

     = +    
    

4 2 3 3

2 3

2 4 5 6

4 5

6 5 4 2 3 3

6 1 2 3

2

4

1 2 1 215 20
3 3 3 3

1 2 1 2 215 6 ,
3 3 3 3 3

1 1 5 1 5 1 56 15 20
6 6 6 6 6 6 6

115
6

C C

C C B

M A C C C

C

       + + +        
        

        + + +        
        

             = + + + +             
             

 +  
 

4 5 6

5
5 1 5 56 .
6 6 6 6

C B































       + +             
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Перенесем все известные точки в правую часть уравнений, а неизвестные 

– в левую. После преобразований получим следующую СЛАУ: 

 

1

1 2 3 4 5 2

1 2 3 4 5 3

1 2 3 4 5 4

1 2 3 4 5 5

1 2 3 4

,
15625 18750 9375 2500 375 30 46656 ,
64 192 240 160 60 12 729 ,

6 15 20 15 6 64 ,
12 60 160 240 192 64 729 ,
30 375 2500 9375 18750

A M
A C C C C C B M

A C C C C C B M
A C C C C C B M
A C C C C C B M
A C C C C C

=
+ + + + + + =

+ + + + + + =
+ + + + + + =
+ + + + + + =
+ + + + + 5 6

7

15625 46656 ,
.

B M
B M









 + =
 =

 (4.27) 

Решим полученную систему линейных уравнений (4.27) методом Крамера 

относительно неизвестных 1 2 3 4 5,  ,  ,  ,  C C C C C . 

1 1 2 3 4 5 6 7

2 1 2 3 4 5 6 7

3 1 2 3 4 5 6 7

4 1 2 3 4

15 15 6 .
2 4 5

222 201 308 123 102 29 .
25 10 15 10 25 50

227 189 837 837 189 22730
200 25 40 40 25 200

29 102 123 308 201
50 25 10 15 1

29 20 16
20 3 6

227
150

0

.

C M M M M M M M

C M M M M M M M

C M M M M M M M

C M M M M

= + − + − + −

= − + − + − +

= − + − + − + −

= − + − +

−

5 6 7

5 1 2 3 4 5 6 7

222 227 .
25 150

1 6 15 20 15 296 .
6 5 4 3 2 20

M M M

C M M M M M M M

− +

= − + − + − + −

 

Подставим значения точек 1 2 3 4 5,  ,  ,  ,  C C C C C  в уравнение (4.26), получим 

искомое интерполяционной кривой 6-го порядка: 

 

( )
( )

( )
( )

6 5 4 2 3 3 2 4 5
1

5 4 2 3 3 2 4 5
2

5 4 2 3 3 2 4 5
3

5 4 2 3 3 2 4 5
4

5 4 2
5

8,7 22,7 22,7 8,7

36 133,2 151,2 61,2 7,2

45 301,5 418,5 184,5 22,5

40 308 600 308 40

22,5 184,5 41

M M t t t t t t t t t tt

M t t t t t t t t tt

M t t t t t t t t tt

M t t t t t t t t tt

M t t t t

= − + − + − +

+ − + − + +

+ − + − + − +

+ − + − + +

+ − + −( )
( )
( )

3 3 2 4 5

5 4 2 3 3 2 4 5
6

5 4 2 3 3 2 4 5 6
7

8,5 301,5 45

7,2 61,2 151,2 133,2 36

8,7 22,7 22,7 8,7 .

t t t t tt

M t t t t t t t t tt

M t t t t t t t t tt t

+ − +

+ − + − + +

+ − + − + − +

 (4.28) 
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Подобным образом можно получить уравнения дуг алгебраических 

кривых и более высокого порядка, проходящих через большее количество точек. 

Для автоматизации процесса моделирования дуг алгебраических кривых, 

проходящих через наперёд заданные точки, была разработана специальная 

компьютерная программа, использование которой позволило получить точечные 

уравнения дуг интерполяционных кривых любого порядка. 

 

4.8. Программа для определения уравнений интерполяционных кривых 
Использование кривых Безье обусловлено особенностями определения 

коэффициентов на основе бинома Ньютона для текущего параметра u  и его 

дополнения до 1, исходя из которого справедливым является условие ( ) 1,nt t+ =  

где 1t t= −  – дополнение параметра t  до 1. Выполнение этого условия 

обеспечивает принадлежность кривой Безье к n -мерному пространству, что 

позволяет обобщить интерполяционные кривые на многомерное пространство 

благодаря инвариантным свойствам точечных уравнений относительно 

параллельного проецирования. Вместе с тем, дальнейшие исследования 

показали, что таким образом можно моделировать интерполяционные кривые, 

используя в качестве прообраза любые непрерывные кривые, 

параметризованные в точечном исчислении. 

В результате была разработана специальная программа в системе 

компьютерной алгебры для определения точечных уравнений 

интерполяционных кривых. Программа реализована на внутреннем языке 

программирования системы компьютерной алгебры Maple. Приведенный ниже 

листинг программы показан на примере определения точечных уравнений 

интерполяционной кривой на основе кривой Безье n -го порядка в соответствии 

с математическим аппаратом, приведенным выше. 

restart; 

n:= 5; e:= 0; 

for i from 0 to n do 
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![ ]: [ 1] (1 )
! ( )!

:

: [ ] :

n i ineq i A i u u
i n i

e e eq i

− ⋅= + ⋅ ⋅ −
⋅ −

= +
 

od: 

S:= {}: SA:= {}: SM := {}: 

for i from 0 to n do 

[ ]

[ ]{ }
[ ]{ }

[ ]{ }

1[ ]:   ,      1

:  1 :

:     1 :

:    1 : 

:ieq i subs u e M i
n

S S eq i

SA SA A i

SM SM M i

  
   

= = =

=


+

= +

= +





 

od: 

R:= solve(S, SA); assign(R); 

collect(e, SM); 

В данном примере исходными данными является исключительно порядок 

кривой n , определяющий исходное уравнение кривой Безье. В первом цикле в 

зависимости от n  на основе исходного уравнения кривой Безье формируются все 

необходимые уравнения системы eq[i]. Второй цикл выполняет подстановку 

значений параметра u  на интервале от 0 до 1, в результате чего происходит 

составление и решение системы линейных алгебраических уравнений с 

помощью оператора solve. Оператор collect для удобства дальнейшего 

использования выполняет сортировку полученного уравнения 

интерполяционной кривой, представленной в точечной форме, где под точками 

понимаются координатные векторы. 

Аналогичным образом задавая уравнения других исходных непрерывных 

кривых eq[i], параметризованных в точечном исчислении, можно получать на их 

основе точечные уравнения интерполяционных кривых.  
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4.9. Моделирование интерполяционных дуг обвода 
В инженерной практике геометрического моделирования кривых, 

поверхностей и тел зачастую возникает необходимость определения кривых, 

проходящих через наперёд заданные точки и имеющих в начальных точках 

касательные. На текущий момент эта задача решается с помощью составных 

линий в виде сплайнов и обводов различного порядка гладкости, вместе с 

вытекающими отсюда сложностями, как на стадии формирования таких линий 

за счёт необходимости обеспечения требуемого порядка гладкости, так и на 

стадии использования при построении поверхностей и тел на их основе, 

определении экстремальных точек и т.д. Кроме того, необходимость стыковки 

линий приводит к множественности возможных решений, обусловленных 

выбором положения и размера касательных в точках стыковки и других 

граничных условий при графическом и аналитическом определении составных 

кривых, проходящих через наперёд заданные точки. Всех этих сложностей, 

приводящих к разработке дополнительных геометрических и вычислительных 

алгоритмов и, как следствие, дополнительным затратам вычислительных 

ресурсов, можно избежать путём использования непрерывных линий, 

обладающих наперёд заданными геометрическими свойствами, т.е. 

интерполяционных кривых, имеющих касательные в начальной и конечной 

точках. Среди таких линий, в инженерной практике на данный момент 

реализована и используется лишь дуга обвода в виде кривой 2-го порядка, 

имеющая касательные в начальной и конечной точках и проходящая через точку, 

которая определяется с помощью инженерного дискриминанта (раздел 2.1.6 

монографии). О существовании алгебраических кривых более высоких 

порядков, проходящих через несколько наперёд заданных точек и имеющих 

касательные в начальной и конечной точках, автору неизвестно. Вместе с тем, в 

выше был рассмотрен метод моделирования интерполяционных кривых на 

основе кривых Безье, аналитическое представление которых выполнено с 

помощью полиномов Бернштейна. Учитывая геометрический смысл кривых 

Безье, полученные интерполяционные кривые могут быть модифицированы в 
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виде дуг обвода с касательными в начальной и конечной точках. Такой подход 

позволяет значительно снизить кусочность составных кривых в виде сплайнов и 

обводов. 

В соответствии с методом моделирования интерполяционных кривых 

точки 1iC +  заменяются на точки 1iM +  в точечном уравнении соответствующей 

кривой Безье путём составления и решения системы линейных алгебраических 

уравнений. При этом принимается условие, что кривая проходит через точку 

1iM +  при определённом значении параметра 1iu + . Таким образом, количество 

значений параметра 1iu +  соответствует количеству точек 1iM + . Кривые Безье уже 

обладают заданными геометрическими свойствами в виде касательных в 

начальной и конечной точках, которые определяются положением точек 2C  и 

.nC  Исходя из этого заменим все точки в исходном уравнении кривой Безье 

кроме точек 2C  и nC . Тогда модифицированная кривая станет интерполяционной 

и сохранит касательные в начальной и конечной точках. При этом количество 

точек, через которые будет проходить кривая, будет на две меньше, чем 

количество исходных точек в исходном уравнении кривой Безье. Это 

обстоятельство нужно учитывать, выбирая порядок кривой. 

Рассмотрим пример геометрического моделирования дуги кривой 5-го 

порядка, проходящей через 4 наперёд заданные точки и имеющей 2 касательных. 

В соответствии с (4.22) исходное точечное уравнение дуги кривой Безье 5-го 

порядка имеет следующий вид: 

 5 4 3 2 2 3 4 5
1 2 3 4 5 65 10 10 5 .M C u C u u C u u C u u C uu C u= + + + + +  (4.29) 

Кривая имеет касательные 1 2C C  и 6 5C C  (рис. 4.3). Принимаем, что при 

0u =  кривая, проходит через точку 1 1M C= , при 1
3

u =  – через точку 2M , при 

2
3

u =  – через точку 3M  и при 1u =  – через точку 4 6M C= . 
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Рисунок 4.3. Геометрическая схема определения дуги обвода, проходящей 

через 4 точки 

 

Поочерёдно подставляя значения параметра u  в точечное уравнение (4.29), 

формируем систему из 4-х уравнений: 

1 1

2 2 5 1 3 4 6

3 2 5 1 3 4 6

4 6

243 80 10 32 80 40
.

243 10 80 40 80 32

M C
M C C C C C C
M C C C C C C

M C

=
 − − = + + +
 − − = + + +
 =

 

Решим полученную систему методом Крамера относительно неизвестных 

1 3 4 6,  ,  ,  C C C C  поскольку точки 2C  и 5C  определяют положения касательных 

1 2C C  и 6 5C C . В результате получим: 

3 1 2 3 4 2 5

4 1 2 3 4 2 5

21 81 81 1 5 1 .
40 20 40 4 4 2

1 81 81 21 1 5 .
4 40 20 40 2 4

C M M M M C C

C M M M M C C

= − + − + − +

= − + − + −
 

Подставляем полученные выражения в точечное уравнение (4.29): 

( ) ( )

( )

3 22 2 3 2 2
1 2 3

2 3 2
4 2 5

2

3

21 5 81 812 3 3 1
4 2 4 4
5 21 95 1 .
2 4 2

M u u uu u M u u u M u u u M

u u u u u M uu uu uC uC

 = − + + − + 
 

 
 

− +

 + − + + − + 
  

 

В результате получим итоговое точечное уравнение дуги обвода, 

проходящей через 4 наперёд заданные точки 1 2 3 4,  ,  ,  M M M M  с касательными 
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1 2M C  и 4 5M C  (рис. 4.3). Визуализация полученной кривой приведена на рис. 4.4. 

Синим цветом показана дуга обвода, красным – касательные к ней. 

 
 

а) б) 

Рисунок 4.4. Визуализация дуг обвода, проходящих через 4 наперёд заданные 

точки: а) выпуклая кривая; б) кривая с точкой перегиба 

 

Аналогичным образом можно моделировать адаптивные дуги обвода с 

неравномерным изменением параметра в зависимости от распределения 

исходных точек [10]. 

Следует отметить, что в общем случае для определения дуги обвода, 

проходящей через наперёд заданные точки, из дуги кривой Безье с учётом 

предложенной модификации необходимо сохранить обе точки 2C  и nC , 

определяющих касательные. При необходимости можно оставить только одну из 

них. Тогда получим кривую, которая проходит через наперёд заданные точки и 

имеет одну касательную в начале (или в конце) дуги соответственно. 

Рассмотрим пример моделирования интерполяционной кривой, которая 

должна проходить через точки 1M , 2M , 3M  и иметь касательную 1 2M C . 

Используем в качестве основы для модификации дугу кривой Безье 3-го порядка, 

которая обладает достаточной гибкостью для обеспечения точки перегиба: 

 3 2 2 3
1 2 3 43 3 .M C u C u u C uu C u= + + +  (4.30) 

Принимаем значение параметра 0u =  при прохождении текущей точки 

дуги кривой Безье 3-го прядка через точку 1M , 1
2

u =  – при прохождении через 
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точку 2M  и 1u =  – при прохождении через точку 3M . Тогда получим следующую 

систему уравнений: 

1 1

2 2 1 3 4

3 4

8 3 3 .
M C
M C C C C

M C

=
 − = + +
 =

 

Из этой системы уравнений определим точку 3C : 

3 1 2 3 2
1 8 1 .
3 3 3

C M M M C= − + − −  

Подставим полученные выражения в точечное уравнение (4.30): 

( ) ( ) ( )2 2
1 2 3 21 2 8 2 1 3 1 2 .M u u M u uM u u M uu u C= − + + − + −  

Выполним покоординатный расчёт полученного точечного уравнения: 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

1 2 3 2

1 2 3 2

1 2 3 2

2 2

2 2

2 2

1 2 8 2 1 3 1 2

1 2 8 2 1 3 1 2 .

1 2 8 2 1 3 1 2

M M M M C

M M M M C

M M M M C

x u u x u ux u u x uu u x

y u u y u uy u u y uu u y

z u u z u uz u u z uu u z

 = − + + − + −
 = − + + − + −


= − + + − + −

 

Визуализация интерполяционной кривой с одной касательной 

представлена на рис. 4.5. Синим цветом показана интерполяционная кривая, 

красным – касательная. 

 
Рисунок 4.5. Визуализация интерполяционной кривой с одной касательной 
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Аналогичным образом можно использовать метод замены точек симплекса 

в уравнении кривой Безье для обеспечения необходимых геометрических 

свойств. 

 

4.10. Моделирование адаптивных интерполяционных кривых 
Выше был описан метод моделирования дуг алгебраических кривых, 

проходящих через наперёд заданные точки. Основой для моделирования 

послужили кривые Безье, составленные с учётом коэффициентов разложения 

бинома Ньютона. Модификация кривых Безье предусматривает равномерное 

распределение параметра. Это, с одной стороны, обеспечивает линейную 

зависимость между значениями параметров и натуральными значениями 

факторов влияния при условии равномерного распределения натуральных 

значений фактора на соответствующей координатной оси, что позволяет легко 

перейти от параметрических зависимостей к явному уравнению. С другой 

стороны, далеко не всегда исходные данные для моделирования можно 

представить в виде регулярной (равномерной) сети точек. И в случае, когда 

исходные точки (узлы интерполяции) в значительной степени приближены и 

удалены друг от друга, как раз и могут возникать незапланированные 

осцилляции. Рассмотрим процесс возникновения осцилляций более подробно на 

примере моделирования однофакторного процесса с помощью алгебраических 

кривых, проходящих через 3 наперёд заданные точки. 

  
а) б) 

Рисунок 4.6. Геометрические схемы моделирования алгебраических кривых, 

проходящих через 3 наперёд заданные точки 
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На рис. 4.6а показана геометрическая схема моделирования дуги кривой 2-

го порядка, проходящей через исходные точки 1M , 2M  и 3M . Особенностью 

данной геометрической схемы является то, что параметрическая точка N , при 

прохождении отрезка CN  через точку 2M  делит отрезок AB  пополам. Таким 

образом, гипотеза о том, что при значении параметра 0,5v =  дуга кривой 

проходит через точку 2M , которая выдвигается при определении точечного 

уравнения дуги кривой, проходящей через 3 наперёд заданные точки, является 

полностью справедливой. Другими словами, если исходные данные 

распределены равномерно (на рис. 4.6а AN NB= ), то абсолютно справедливым 

является следующее точечное уравнение: 

 ( ) ( )1 2 31 2 4 2 1 ,v v M vvM v MM v− + + −=  (4.31) 

где v  – текущий параметр, который изменяется от 0 до 1; 

1v v= −  – дополнение параметра v  до 1. 

Точечное уравнение (4.31) же обладает высокой точностью интерполяции, 

если исходные данные находятся в окрестности параметрической точки N . 

Однако в реальности исходные данные могут располагаться с любым шагом 

между узловыми точками интерполяции, например, как показано на рисунке 1б. 

Как видно на рис. 4.6б, при прохождении отрезка CN  через исходную точку 2M  

параметрическая точка N  занимает такое положение, при котором отрезок AN  

значительно длиннее отрезка NB . При этом справа образуется 

незапланированная осцилляция, в результате действия которой искажается 

реальный характер протекания процесса. В данном случае, в качестве 

показательной модели, используется кривая 2-го порядка, которая в силу своих 

особенностей не склонна к формированию других дефектов. С алгебраическими 

кривыми более высоких порядков возможны самопересечения и другие дефекты. 

Это приводит к необходимости уточнения методики определения точечных 

уравнений, проходящих через наперёд заданные точки, применительно к 

решению данной конкретной задачи. Тогда нарушается их универсальность, но 

в значительной степени повышается точность моделирования. Другими словами, 
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алгебраическая кривая адаптируется для решения конкретной задачи 

моделирования. 

Адаптацию алгебраических кривых, проходящих через наперёд заданные 

точки, предлагается осуществлять за счёт вычисления значения параметра 

ANv
AB

=  (рис. 4.6б), при котором текущая точка дуги кривой M  проходит через 

узловую точку интерполяции 2M . В остальном метод определения 

интерполяционных кривых, изложенный в разделах 4.2–4.7 монографии, 

остаётся неизменным. 

Рассмотрим в качестве примера моделирование адаптивной дуги кривой 2-

го порядка, проходящей через 3 наперёд заданные точки. 

Координаты исходных точек, расположенные по оси Ox , имеют 

следующие значения: 
1 2 3

8,89;   1 ;   ,11 0,33M M Mx x x= = = . Из этого следует, что 

движение текущей точки дуги кривой 2-го порядка происходит в 

противоположном направлении по отношению к координатной оси Ox . Также 

из значений координат видно, что точка 2M  находится значительно ближе к 

точке 3M  и не делит отрезок 1 2M M  пополам. 

В качестве исходного воспользуемся точечным уравнением дуги кривой 

Безье 2-го порядка: 

 2 22 ,M Av Cvv Bv= + +  (4.32) 

где A , B  и C  – точки, образующие симплекс плоскости, в котором определяется 

дуга кривой Безье 2-го порядка (рис. 4.6б). 

Смоделируем дугу кривой 2-го порядка, проходящей через наперед 

заданные точки 1M , 2M  и 3M  (рис. 4.6б). При значении параметра 0v =  кривая 

будет проходить через точку 1А М≡  – начало дуги кривой Безье, при 1v =  кривая 

будет проходить через точку 3В М≡  – конец дуги кривой Безье. Определим 

значение параметра v , при котором текущая точка дуги кривой M  будет 

проходить через исходную точку 2M . В соответствии со значениями координат 

исходных точек по оси Ox , получим: 
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8,89 1,11
8,89 0,3

0,9 .
3

1v = ≈−
−

 

В результате получим следующую систему линейных алгебраических 

уравнений: 

 
1

2

3

0,0081 0,1638 0,8281 .
A M

A C B M
B M

=
 + + =
 =

 (4.33) 

Решим систему уравнений (4.33) относительно неизвестных A , B  и C  

методом Крамера. Поскольку первая точка A  и последняя точка B  уже известны, 

достаточно определить только промежуточную точку C : 

1 2 30,049  6,105 5,056 .C M M M= − + −  

Подставив значения точек A , B  и C  в точечное уравнение (4.32), получим 

уравнение адаптивной дуги кривой 2-го порядка, проходящей через 3 наперёд 

заданные точки 1M , 2M  и 3M : 

 ( ) ( )1 2 31 1,098 12, .21 11.111 10.111v v M vvMM v v M− + + −=  (4.34) 

Выполним визуализацию адаптивной кривой 2-го порядка и сравним её с 

кривой, которая определяется уравнением (4.31). В качестве координат 

исходных точек по оси Oy  используем следующие значения: 

1 2 3
;   5;   7 8M M My y y= = = . 

 
 

а) б) 

Рисунок 4.7. Визуализация моделей кривых 2-го порядка, проходящих через 3 

наперёд заданные точки: а) универсальная кривая; б) адаптивная кривая 
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Как видно из рис. 4.7, адаптивная кривая (рис. 4.7б) имеет ярко 

выраженный минимум, который находится в пределах положительных значений 

оси Oy , что вполне допустимо при моделировании «трёхточечных» 

экспериментов. Также исчезает осцилляция (на рис. 4.7а показана красным 

кругом), которая давала отрицательные значения по оси Ox , что никак нельзя 

было объяснить с точки зрения технического смысла характера протекания 

исследуемого процесса. 

 

4.11. Примеры моделирования не алгебраических интерполяционных 
кривых 

Выше приведен метод и примеры моделирования интерполяционных 

алгебраических кривых, математическую основу которых составляют 

полиномиальные функции. Вместе с тем, предложенный метод может 

аналогичным образом эффективно работать и с другими функциями, 

обеспечивая необходимые интерполяционные свойства кривой. Рассмотрим 

некоторые из них. 

Пример 1. Используем в качестве исходной кривую, полученную на 

основе конфигурации Дезарга, уравнение (3.6). Используем равномерное 

распределение. При значении параметра 0t =  кривая проходит через точку 

1A M≡  – начало дуги кривой, при 1t =  – через точку 4D M≡  – конец дуги 

кривой. Принимаем значение параметра 1
3

t =  при прохождении текущей точки 

через точку 2M  и значение 2
3

t =  параметра при прохождении через точку 3M . 

После преобразований определим точки 2M  и 3M : 

1 4
2

1 4
3

8 2 4 .
15 15 15 15

4 2 8 .
15 15 15 15

M B C MM

M B C MM + + +=

+ + +=
 

В результате получим следующее уравнение интерполяционной кривой: 
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3 2 3 2

1 12 2

3 2 3 2

3 42 2

9 18 11 2 15 25 10
4 4 2 4 4 2
15 20 5 9 9 2

4 4 2 4 4 2

t t t t t tM M M
t t t t
t t t t t tM M
t t t t

− + − + − += + +
− + − +

− + − − ++ +
− + − +

 (4.35) 

Пример 2. Используем в качестве исходной кривую, полученную на 

основе дробно-рациональной функции: 

 
3 2

3 2 .
1

At Bt Ct DM
t t t
+ + +=

+ + +
 (4.36) 

При равномерном распределении параметра t , после преобразований 

получим следующие значения узлов интерполяции iM : 

1

2

3

4

3 9 27
40

8 12 18 27
65

4

M
A B C DM

A B C DM

A B C DM

D=
 + + + =

 + + +=


+ + + =

 

Решим полученную систему уравнений относительно неизвестных 

,  ,  ,  A B C D  и подставим в исходное уравнение (4.36). В результате получим 

следующее уравнение интерполяционной кривой: 

 

3 2 3 2

1 23 2 3 2

3 2 3 2

3 43 2 3 2

27 54 33 6 120 200 80
6 6 6 6 6 6 6 6

195 260 65 108 108 24
6 6 6 6 6 6 6 6

t t t t t tM M M
t t t t t t
t t t t t tM M

t t t t t t

− + − + − += + +
+ + + + + +

− + − − ++ +
+ + + + + +

.
 (4.37) 

Сравним полученные кривые. Как видно из рис. 4.8 при данном 

расположении узлов интерполяции наиболее предпочтительной для 

интерполяции является кривая, полученная на основе конфигурации Дезарга. 

Тем не менее, при разных координатах узлов интерполяции каждая из 

полученных кривых может найти своё применение в инженерной практике. 
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Рисунок 4.8. Визуализация интерполяционных кривых: 

красная – интерполяционная кривая на основе конфигурации Дезарга; 
зелёная – интерполяционная кривая 3-го порядка; 

коричневая – интерполяционная кривая на основе дробно-рациональной 
функции 

Пример 3. Возможны также другие конструкции на основе дробно-

рациональных функций. Например, можно использовать сложные и составные 

дроби в качестве исходных уравнений для определения новых 

интерполяционных кривых: 

 
2

1 2 3
2

4 5

.
1

At A t AM
A t A t

+ +=
+ +

 (4.38) 

При равномерном распределении параметра t , после преобразований 

получим следующие значения узлов интерполяции iM : 

1 3

1 2 3
2

4 5

1 2 3
3

4 5

1 2 3
4

4 5

1 2 3
5

4 5

  
4 16   

4 16
2 4

2 4
9 12 16
9 12 16
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M A
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A A

A A AM
A A
A A AM
A A

A A AM
A A

=
+ +=

+
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+
+ +=

+

=





 +

 +



+
 + +


+ +
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Решим полученную систему уравнений относительно неизвестных iA  и 

подставим в исходное уравнение (4.38). В результате получим точечное 

уравнение кривой 2-го порядка, проходящей через 5 наперёд заданных точек – 

узлов интерполяции. В символьном виде, итоговое уравнение получается 

достаточно громоздким, поэтому результат рассмотрим на примере. 

Пусть заданы 5 последовательных узлов интерполяции с координатами: 

( ) ( ) ( ) ( ) ( )1 2 3 4 51;2 ,  2;1 ,  4;1 ,  6;3 ,  7;6A A A A A . После применения описанного выше 

метода получим следующую систему параметрических уравнений: 
2

2

2

2

16 2 3
4 4 3

136 112 30
16 2

=

1
=

2 5

t tx
t t

t ty
t t

 + +
 − +


− +
 − +

. 

Визуализация полученной кривой представлена на рисунке 4.9. 

 
Рисунок 4.9. Визуализация кривой 2-го порядка, проходящей через 5 точек 

 

Следует учитывать, что кривая 2-го порядка не обладает достаточной 

гибкостью для обеспечения точек перегиба при различных значениях координат 

узлов интерполяции и потому подходит для интерполяции не любых исходных 

данных. Вместе с тем, это уравнение можно рассматривать, как инструмент 
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построения коники по пяти точкам, по аналогии с уравнениями, полученными в 

разделах 2.1.4 и 2.1.5 данной монографии. 

Пример 4. Используем в качестве исходной кривую, полученную на 

основе экспоненциальной функции: 

 1 32
1 2 3e e ,ek tk tk tM A A A= + +  (4.39) 

при условии 31 2e e e 1k tk t k t + ≠+ . 

Тогда итоговое уравнение интерполяционной кривой, проходящей через 3 

точки, будет иметь следующий вид: 
1 2 3 1 3 2 2 1 3 2 3 1 3 1 2 3 2 1

1 3 2 3 3 1 3 21 2 2 1

3 1 1 3 3 2 2 32 1 1 2

11 2

/2 /2 /2 /2 /2 /2

1/2 /2 /2 /2/2 /2

/2/2

e
e e e e e e

e e e e e
e e e e e

ee
e

k t k k k t k k k t k k k t k k k t k k k t k k

k k k k k k k kk k k k

k t k k t k k t k k t kk t k k t k

kk k

M M
+ + + + + + + + + + + +

+ + + ++ +

+ + + ++ +

+

− + + − − += +
− + + − − +

− − + + −+
− + 3 2 3 3 1 3 22 1

1 3 2 3 3 1 3 21 2 2 1

1 3 2 3 3 1 3 21 2 2 1

2/2 /2 /2/2

/2 /2 /2 /2/2 /2

3/2 /2 /2 /2/2 /2

e e e e
e e e e e .e

e e e e ee

k k k k k k kk k

k t k k t k k t k k t kk t k k t k

k k k k k k k kk k k k

M

M

+ + + ++

+ + + ++ +

+ + + ++ +

+
+ − − +

− − + + −+
− + + − − +

 

Итоговое уравнение получается достаточно громоздким, но к 

преимуществам его использования относится 3 свободных параметра 1 2 3,  ,  k k k , 

которые позволяют подобрать оптимальную кривизну интерполяционной 

кривой. Например, на рис. 4.10 представлены для сравнения две 

интерполяционные кривые: синяя – на основе параболы и коричневая – на основе 

экспоненциальной функции. 

 
Рисунок 4.10. Визуализация интерполяционных кривых при условии 

31 2e e e 1k tk t k t + ≠+ : 
синяя – интерполяционная кривая на основе параболы; 

коричневая – интерполяционная кривая на основе экспоненциальной функции 
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Благодаря выбору параметра 1 2 3,  ,  k k k  экспоненциальная кривая выглядит 

предпочтительней. Кроме того, это открывает новые возможности по поиску 

значений параметров экспоненциальных функций, обеспечивающих 

необходимые геометрические свойства кривой. 

Для более удобного управления формой кривой можно установить 

ограничение: 31 2e e e 1k tk t k t + =+ . Тогда можно исключить один из параметров 

выразив его через два других. Например, 
( )1 2

3

ln 1
=

e ek t k t

k
t

− −
. В результате 

получим следующее точечное уравнение интерполяционной кривой: 
1 2 2 1 2 1 1 2 1 2 1 2

1 2 1 2 1 2 1 2

2 1 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 2

0.5 0.5 0.5 0.5

10.5 0.5 0.5 0.5

20.5 0.5 0.5 0.5

0.5 0

e e e e e e
e e e e e e
e e e e e e

e e e e e e
e e

k t k k t k k t k k t k k k k k

k k k k k k k k

k t k k t k k t k t k k

k k k k k k k k

k t k k t

M M

M

+ + + + + +

+ +

+ +

+ +

+ +

− + − + + −= +
− − + + −
− + − − ++ +

− − + + −
−+

1 1 2 2 1

1 2 1 2 1 2 1 2

.5 0.5 0.5

30.5 0.5 0.5 0.5
e e e e

e e e e e
.

e

k k t k t k k

k k k k k k k k M+ +

− + − +
− − + + −

 

Визуализация полученной кривой в сравнении с параболической 

интерполяцией представлена на рис. 4.11. 

 
Рисунок 4.11. Визуализация интерполяционных кривых при условии 

31 2e e e 1k tk t k t + =+ : 
синяя – интерполяционная кривая на основе параболы; 

коричневая – интерполяционная кривая на основе экспоненциальной функции 
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Как и в предыдущем примере, благодаря оптимальному выбору 

параметров 1 2,  k k  удалось достичь более качественной интерполяции по 

сравнению с параболической. 

Пример 5. В качестве последнего примера рассмотрим моделирование 

дуги эллипса, проходящего через 3 точки, с помощью тригонометрических 

функций. В качестве исходного уравнения используем параметризацию эллипса 

из раздела 2.1.1.4 данной монографии: 

 ( ) ( )1 2 3 2 2cos sin .M A A A A t At= − + − +  (4.40) 

Используем равномерное распределение. При значении параметра 0t =  

кривая проходит через точку 1M  – начало дуги кривой, при t π=  – через точку 

3M  – конец дуги кривой. Принимаем значение параметра 
2

t π=  при 

прохождении текущей точки через точку 2M . После преобразований получим 

следующую систему уравнений: 

1
3

2 3 2

3 2

1
1

1

.
2

2

M A
M MM A A

M A A


  =



+

= −

=
=  

Подставим полученные выражения в исходное уравнение (4.40) и получим 

точечное уравнение интерполяционной кривой: 

1 2 3
cos sin 1 cos sin 1sin .

2 2 2 2 2 2
t t MtMt tM M   = − + + + − − +   

   
 

Исходя из условий интерполяции кривая будет проходить через 3 точки 

при изменении параметра от 0 до π  (рис. 4.12а). При [ ]0;2t π∈  получим целый 

эллипс (рис. 4.12б). 

Как демонстрируют приведенные примеры, предложенный метод замены 

симплекса для определения интерполяционных кривых обладает значительной 

гибкостью, что подтверждается разнообразием получаемых кривых. Метод 

может быть эффективно использован в системах компьютерного 

геометрического моделирования, особенно в задачах параметрического 
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проектирования. Основным ограничением метода является требование 

соответствия между порядком расположения интерполяционных узлов и 

последовательностью значений параметра, что необходимо учитывать при его 

практическом применении. 

  
а) б) 

Рисунок 4.12. Визуализация эллиптической кривой, проходящей через 3 
точки: а) при [ ]0;t π∈ ; б) при [ ]0;2t π∈  
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ГЛАВА 5. МОДЕЛИРОВАНИЕ АППРОКСИМАЦИОННЫХ КРИВЫХ 
 

Одними из основных инструментов решения задач научной визуализации 

изображений и визуальной аналитики является интерполяция и аппроксимация. 

Интерполяция применяется для визуализации полей различного происхождения, 

для быстрой визуализации сцен с помощью 3D-ускорителей, для реализации 

технологий сжатия текстур, используемых в современных персональных 

компьютерах, планшетах и смартфонах, для визуализации результатов 

параметрических расчетов в задачах вычислительной аэрогазодинамики и др. 

Аппроксимация традиционно применяется для численного решения 

дифференциальный уравнений. Кроме того, она получила широкое 

распространение в инженерной геометрии и компьютерной графике, 

используется для 3D моделированию равновесных капиллярных поверхностей и 

визуализации различных эффектов, связанных с их устойчивостью или 

неустойчивостью, для обработки результатов параметрических расчетов в 

задачах вычислительной аэрогазодинамики и других задач. 

Среди разнообразия задач многомерной аппроксимации, необходимо 

выделить класс задач, связанных с аппроксимацией непрерывных функций. 

Такие задачи, как правило решаются на отрезке функций с интерполяцией на 

равномерных сетках. Выбор равномерных сеток связан с необходимостью 

определять заранее узлы интерполяции, поскольку они необходимы для 

определения коэффициентов интерполяционных функций. Вместе с тем, в 4 

главе данной монографии был рассмотрен метод определения точечных 

уравнений интерполяционных кривых, который позволяет сохранить 

возможность выбора любых узлов интерполяции. Использование таких 

интерполяционных кривых открывает новые возможности в аппроксимации 

непрерывных кривых и позволяет по-новому сформулировать задачу 

аппроксимации непрерывных функций, связанную с поиском оптимальных 

узлов аппроксимации путём минимизации целевой функции, которая ранее 
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просто не могла быть поставлена из-за ограниченных возможностей 

существующих математических аппаратов интерполяции. 

 

5.1. Метод поиска оптимальных узлов аппроксимации 
Метод оптимального поиска узлов аппроксимации [28, 25] основан на 

использовании интерполяционных кривых, реализованных в точечном 

исчислении. Основная идея определения таких кривых заключается в том, что 

вместо конкретных значений полиномиальных коэффициентов используются 

координатные векторы Ak, которые управляют формой алгебраической кривой: 

1
0

,
n

n k
k

k
M A t −

+
=

=  

где M − текущая точка дуги кривой; 

t − текущий параметр, который изменяется от 0 до 1; 

n – количество узлов интерполяции. 

Выполним замену координатных векторов Ak на узлы интерполяционной 

кривой Mk. Для этого примем следующее условие: M=Mk+1 при равномерном 

распределении текущего параметра t=k/n. Следует учесть, что первый и 

последний узлы интерполяции уже определены начальной и конечной точкой 

кривой. Т.е. A1=M1 при t=0, а An=Mn при t=1. В результате вместо параметра t в 

каждой точке (узле интерполяции) получим конкретное его значение. Далее 

составляется система линейных уравнений, которая решается методом Крамера 

относительно неизвестных координатных векторов Ak, заменяя их на узлы 

интерполяционной кривой Mk. Определённые таким образом выражения Ak 

подставляются в исходное точечное уравнение алгебраической кривой. В 

результате получим точечное уравнение интерполяционной кривой, которая 

определяется узловыми точками Mk и текущим параметром t: 

( )1 1
0

,
n

k k
k

M M tφ+ +
=

=  

где ( )1k tφ +  – полиномиальные функции степени n, полученные в результате 

замены координатных векторов Ak на узлы интерполяционной кривой Mk. 
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Таким образом в уравнении интерполяционной кривой сохраняется 

возможность управлением узлами интерполяции Mk. Переходя к системе 

параметрических уравнений, для двухмерного пространства получим: 

( )

( )

1 1
0

1 1
0

,

n

k k
k

n

k k
k

x x t

y y t

φ

φ

+ +
=

+ +
=

 =

 =





 

где xk+1 и yk+1 – координаты узлов интерполяции Mk+1. 

Полученная система уравнений описывает нелинейное по осям абсцисс и 

ординат пространство с помощью двух независимых полиномиальных функций. 

Теперь имея уравнение кривых сохраняющих координаты узлов 

интерполяции, можно ставить задачу оптимального расположения узлов 

интерполяции по оси абсцисс для аппроксимации непрерывных функций. Для 

этого интерполяционную кривую необходимо дискретизировать – представить в 

виде дискретного набора точек, количество которых m должно быть больше 

количества узлов интерполяции n. В результате для двухмерного пространства 

получим два отдельных массива функций xi и yi от узлов интерполяции и 

текущего параметра с равномерным распределением значений ti=i/m. Таким 

образом, для каждого конкретного значения ti получим значения функций xi и yi, 

которые зависят только от узлов интерполяции Mk. 

Целевая функция представляет собой сумму квадратов разности координат 

( )( )2

1

m

i i
i

f x y
=

− , где ( )if x  – это аппроксимируемая функция в качестве 

переменной, для которой используется массив значений, полученный на основе 

аппроксимирующей функции. 

Определив минимум целевой функции, получим значения координат узлов 

интерполяционной кривой, оптимизированные по оси абсцисс и итоговое 

уравнение интерполяционной кривой в векторной форме или в виде системы 

параметрических уравнений. 
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Фактически, предложенный метод основан на минимизации 

среднеквадратичного отклонения двух функций. При этом происходит 

«обучение» аппроксимирующей полиномиальной функции на основе 

аппроксимируемой. Качество такого «обучения» зависит от количества точек, 

полученных путём дискретизации интерполяционной кривой. Таким образом, 

чем выше значение количества дискретизированных точек интерполяционной 

кривой m, тем выше качество аппроксимации и вместе с тем выше 

вычислительная нагрузка. Как показали вычислительные эксперименты, эта 

зависимость не является линейной и даже при небольших значениях m можно 

получить качественные результаты аппроксимации при низких вычислительных 

затратах. 

 

5.2. Моделирование кривых, аппроксимирующих функцию Рунге 
Для проведения вычислительных экспериментов выбрана функция Рунге, 

которая определяется на отрезке [-1,1]: 

( ) 2
1 .

1 25
f x

x
=

+
 

Для аппроксимации функции Рунге используется интерполяционная 

кривая в нелинейном двумерном пространстве, проходящая через 6 узлов 

интерполяции Mk, которая определяется следующим точечным уравнением и 

сводится к системе двух однотипных параметрических уравнений: 

1 1 2 2 3 3 4 4 5 5 6 6

1 1 2 2 3 3 4 4 5 5 6 6

1 1 2 2 3 3 4 4 5 5 6 6

.

,

M M M M M M M

x x x x x x x
y y y y y y y

φ φ φ φ φ φ

φ φ φ φ φ φ
φ φ φ φ φ φ

= + + + + +

= + + + + +
 = + + + + +

  

где xj и yj – координаты 6 узлов интерполяции ( 1,2,...,6j = ); 

5 4 3 2 2 3 4
1

77 269
12 24

77
12

t t t t t t t ttφ = + − +− ; 

4 3 2 2 3 4
2

1450 1850 2525
24 48 4

t t t t t t ttφ = − + − ; 
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4 3 2 2 3 4
3

2950 1150 5025
24 12 3

t t t t t t ttφ = − + − + ; 

4 3 2 2 3 4
4

50 1150
3

2950 25
12 24

t t t t t t ttφ = − + − ; 

4 3 2 2 3 4
5

25 1850 1450 25
4 48 24

t t t t t t ttφ = − + − + ; 

4 3 2 2 3 4 5
6

77 269 77
12 24 12

t t t t t t tt tφ = − + − + ; 

t  – параметр интерполяционной кривой, который изменяется от 0 до 1; 

1t t= −  – дополнение параметра t до 1. 

Значения ( )if x  вычисляются исходя из исходной функции Рунге: 

( ) 2
1 .

1 25i
i

f x
x

=
+

 

Далее составляем и определяем минимум целевой функции: 

( )( )2

1

m

i i
i

f x y
=

− . Для проведения вычислительных экспериментов значение 

m=100. 

Из 6 узлов интерполяции первый и последний уже определены исходя из 

условий: 1 1x = − , 6 1x = . Остаётся вычислить координаты 4 узлов: 2 3 4 5,  ,  ,  x x x x , 

таким образом, чтобы отклонение аппроксимируемой полиномиальной функции 

от аппроксимирующей было минимальным. 

Вычисления производились в системе компьютерной алгебры. Для 

минимизации целевой функции пакет для оптимизации DirectSearch. В 

результате были определены оптимальные координаты узлов аппроксимации 

функции Рунге по оси абсцисс: 

2 3 4 50.233198,  0.06054,  0.06054,  0.233198.x x x x= − = − = =  

Итоговые уравнения аппроксимирующей функции в нелинейном 

двухмерном пространстве представлены в виде следующей системы 

параметрических уравнений: 



181 

5 4 3 2

9 5 4 3 2

1 22.886 57.215 57.076 28.398 7.652
.

9.964 10 15.603 31.206 15.691 0.088 0.038
x t t t t t
y t t t t t−

 = − + − + − +


= − ⋅ + − + − +
 

Как видно из полученной системы уравнений, для аппроксимации 

функции Рунге было использовано два полинома 5-й степени по каждой из осей 

координат. Выполним визуальное сравнение графика аппроксимируемой 

функции Рунге и аппроксимирующей алгебраической кривой 5-го порядка в 

нелинейном пространстве (рис. 5.1). 

 
Рисунок 5.1. Визуализация графика функции Рунге (красный), 

аппроксимированного алгебраической кривой 5-го порядка в нелинейном 

пространстве (синий) 

 

Для визуального сравнения полученных результатов приведём график 

функции Рунге, аппроксимированный полиномом Лагранжа с равномерным 

распределением узлов интерполяции (рис. 5.2) и с использованием узлов 

Чебышева (рис. 5.3), которые считаются оптимальными для аппроксимации 

функции Рунге. Как видно из сравнения рисунка 1 с рисунками 2 и 3, 

существующие методы аппроксимации функции Рунге значительно уступают по 

точности предложенному методу поиска оптимальных узлов аппроксимации. 
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Рисунок 5.2. Визуализация графика функции Рунге (красный), 

аппроксимированного полиномом Лагранжа с равномерным распределением 

узлов интерполяции (синий) 

 
Рисунок 5.3. Визуализация графика функции Рунге (красный), 

аппроксимированного полиномом Лагранжа с использованием узлов Чебышева 

(синий) 

 

По результатам расчёта среднеквадратичная ошибка аппроксимации 

(MSE) составила всего 0.0000284, что подтверждается сравнением графиками 

функций, представленных на рисунке 1. Для сравнения MSE интерполяционной 

кривой 5-го порядка, построенной на основе 6 узлов Чебышева, составляет. Для 

достижения MSE=0.0000253 кривой на основе узлов Чебышева, сопоставимой с 

среднеквадратичной ошибкой на основе метода определения оптимального 

расположения узлов аппроксимации, необходимо не менее 23 узлов, что 

приводит к необходимости использования полинома 22 степени и значительно 
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повышает сложность вычислений, требования к округлению полиномиальных 

коэффициентов и усложняет возможности их практического использования. 

Столь высокое качество аппроксимации при минимальном значении узловых 

точек обеспечивается тем, что аппроксимирующая кривая определяется в 

нелинейном пространстве, сохраняя при этом нелинейность как по оси абсцисс, 

так и по оси ординат. Это наводит на мысль, что ещё более эффективной 

аппроксимации можно достичь для пространственных интерполяционных 

кривых в многомерном пространстве. 

Также были проведены вычислительные эксперименты по определению 

оптимальных узлов аппроксимации для различных интерполянтов в виде 

алгебраических кривых, проходящих через наперёд заданные точки. В 

результате мы можем проанализировать тенденцию изменения 

среднеквадратичной ошибки MSE метода поиска оптимальных узлов 

аппроксимации непрерывных функций с учётом нелинейности пространства в 

зависимости от количества узлов аппроксимации (табл. 5.1). 

Таблица 5.1. Зависимость MSE от количества узлов аппроксимации 

Количество 
узлов 5 6 7 8 9 10 11 

MSE 0,000963 2,84E-05 5,14E-07 1,01E-08 8,15E-10 2,67E-08 4E-09 
 

Как видно из таблицы 5.1, до 9 узлов наблюдается стабильный рост 

точности аппроксимации и незначительное её снижение при использовании 10 и 

11 узлов аппроксимации. Это связано с ограничением использованного 

численного метода минимизации целевой функции по числу итераций. Несмотря 

на это значения среднеквадратичной ошибки остаются на уровне 10-8 и ниже, что 

говорит об очень высоком качестве аппроксимации и эффективности 

предложенного метода. 

Сравним предложенный метод с результатами исследований других 

авторов. При использовании алгоритма на основе вейвлет-преобразования, 

обеспечившего квази-интерполяцию функции Рунге методом сингулярных 

вейвлетов с равномерным расположением узлов интерполяции на промежутке 
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[ ]1;1−  для достижения качественного результата, понадобилось 13 точек, что 

уступает по количеству узлов аппроксимации по сравнению с предложенным 

методом. При использовании адаптивных радиальных базисных функций для 

аппроксимации функции Рунге на отрезке [–1, 1] для достижения MSE=0.000017 

сопоставимой по точности с предложенным методом вместо 6 узлов 

интерполяции понадобилось 47. При этом для точной аппроксимации со 

среднеквадратичной ошибкой на уровне 2.6Е-6 понадобилось 83 узла. 

Применим метод поиска оптимальных узлов аппроксимации непрерывных 

функций с учётом нелинейности пространства для аппроксимации функции 

Рунге с новыми граничными условиями на отрезке [–2.5, 2.5]. 

 
а) 

 
б) 

Рисунок 5.4. Визуализация графика функции Рунге (красный) на отрезке 
[-2.5,2.5], аппроксимированного алгебраической кривой в нелинейном 

пространстве (синий): 
а) кривая 5-го порядка, проходящая через 6 узлов интерполяции; 
б) кривая 6-го порядка, проходящая через 7 узлов интерполяции 

 

При аппроксимации функции Рунге на отрезке [–2.5, 2.5] алгебраической 

кривая 5-го порядка, проходящая через 6 узлов интерполяции, 

среднеквадратичная ошибка составила 0.0005587. А при использовании кривой 

6-го порядка, проходящей через 7 узлов интерполяции, MSE=0.00001936. Как 
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видно из полученных результатов (рис. 5.4а и 5.4б), эффективность 

предложенного метода выше при значительно меньшем количестве узловых 

точек аппроксимации. В некоторых работах для аппроксимации функции Рунге 

нейронной сетью с 1 нейроном на входном слое, 3 нейронами на скрытом слое и 

1 нейроном на выходном слое обученной на 25 эпохах использовалось 500 точек. 

В то время, как для реализации предложенного метода поиска оптимального 

расположения узлов аппроксимации в нелинейном пространстве понадобилось 

всего 6 и 7 узловых точек соответственно (рис. 5.4а и 5.4б). 

К преимуществам предложенного метода оптимизации расположения 

узлов аппроксимации, помимо низких значений среднеквадратичной ошибки, 

следует отнести то, что метод является устойчивым к увеличению количества 

узлов. Это объясняется спецификой самого метода, который каждый раз 

оптимизирует расположение узлов аппроксимации, адаптируясь к 

аппроксимируемой функции. При этом отсутствует нежелательный эффект 

осцилляций полиномиальной функции, что подтверждается на примере Рунге. 

Другим преимуществом является значительное снижение степени 

аппроксимирующих полиномов по сравнению с другими методами 

аппроксимации без необходимости использования для аппроксимации кусочных 

функций. 

К недостаткам предложенного метода относится то, что он реализован с 

использованием численных методов для поиска минимума целевой функции, 

которые в значительной степени зависят от качества выбора начального 

приближения. Требуется проведение дополнительных исследований для 

обеспечения устойчивости предложенного метода к минимизации целевой 

функции. Вместе с тем, предложенный метод показал высокую устойчивость по 

отношению к увеличению узлов аппроксимации. Он является в достаточной 

степени универсальным и может стать эффективным инструментом 

аппроксимации любых непрерывных функций, а также массивов 

экспериментальных данных любого происхождения. 
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Поскольку кривая является основным формообразующим инструментом 

геометрического моделирования, предложенный метод поиска оптимальных 

узлов аппроксимации непрерывных функций с учётом нелинейности 

пространства имеет большие перспективы в сторону увеличения количества 

переменных аппроксимирующей функции для аппроксимации геометрических 

объектов, процессов и явлений, имеющих сложную геометрическую форму с 

помощью непрерывных функций без необходимости использования кусочных 

функций. Такие кривые могут стать эффективным инструментом описания 

внутренней структуры пространства для моделирования изотропных и 

анизотропных геометрических тел, как выделенной части пространства. Также 

перспективу дальнейших исследований составляют поиск эффективных методов 

минимизации целевой функции многих переменных и проведение 

вычислительных экспериментов по аппроксимации различных непрерывных и 

кусочных функций. 

 

5.3. Примеры моделирования аппроксимационных кривых 
Рассмотрим несколько примеров предложенного метода для 

аппроксимации других непрерывных функций. 

Пример 1. Аппроксимация эллипса. В качестве примера возьмем 

уравнение эллипса в форме, содержащей радикал, поскольку такая форма 

представляет наибольшие сложности для аппроксимации: 

 
2 2

2
2 ,b xy b

a
= −  (5.1) 

где a  и b  – большая и меньшая полуоси эллипса соответственно. Для тестового 

примера примем 4a =  и 3b = . 

Для аппроксимации эллипса используем интерполяционную кривую 3-го 

порядка, которая описывается точечным уравнением (4.16). В результате 

оптимизации были найдены следующие узлы для аппроксимации эллипса: 

2 31.877016,   1.877016.x x= − =  
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Начальный и конечный узлы аппроксимации в данном случае 

определяются большей полуосью эллипса: 

1 2,   .x a x a= − =   

После преобразований получим следующую систему параметрических 

уравнений алгебраической кривой, аппроксимирующей эллипс: 
3 2

2

14.67944 22.01916 0.66028 4
11.921353 11.921353

x t t t
y t t

 = − + + −


= − +
  

В результате аппроксимации было достигнуто значение 

среднеквадратичной ошибки MSE = 0.00014577, что является хорошим 

результатом, который подтверждается визуально. На рис. 5.5 черным цветом 

показан график исходного уравнения эллипса (5.1), а зелёным – алгебраическая 

кривая, аппроксимирующая эллипс. Красным цветом показаны найденные узлы 

аппроксимации. 

 
Рисунок 5.5. Визуализация алгебраической кривой, аппроксимирующей эллипс 

 

Пример 2. Комбинация синусов с разными частотами, которая 

описывается следующим уравнением: 

 ( ) ( )sin sin 10 .y x x= +  (5.2) 

Рассмотрим сначала применимость метода на отрезке [ ]0.5,0.5− . Для 

аппроксимации будем использовать интерполяционную кривую 5-го порядка, 

которая описывается точечным уравнением (4.25). В результате поиска 

оптимальных узлов аппроксимации были найдены следующие координаты узлов 

аппроксимации:  
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2 3 4 50.265069, 0.084952, 0.084952, 0.265069x x x x= − = − = =  

и получена следующая система параметрических уравнений: 
5 4 3 2

5 4 3 2

1.25933 3.1483 3.44789 2.0235 1.46461 0.5
219.35774 548.39435 452.53984 130.41541 5.95318 0.47949

x t t t t t
y t t t t t

 = − + − + −


= − + − + +
 

При этом удалось достичь MSE = 2.47Е-06, что подтверждается визуальной 

проверкой. На рис. 5.6 черным цветом показан график исходной функции (5.2), 

а зелёным – алгебраическая кривая, аппроксимирующая комбинацию синусов с 

разными частотами на отрезке [ ]0.5,0.5− . Точками показаны найденные узлы, 

оптимальные для аппроксимации функции (5.2). 

 
Рисунок 5.6. Визуализация алгебраической кривой, аппроксимирующей 

комбинацию синусов с разными частотами на отрезке [ ]0.5,0.5−  

 

Рассмотрим результаты аппроксимации этой же функции на интервале 

[ ]1,1− . В данном случае для аппроксимации использовалась интерполяционная 

кривая 9-го порядка и найдены следующие оптимальные узлы аппроксимации: 

2 3 4 5

6 7 8 9

0.52455, 0.3, 0.128125, 0.030585,
0.030585, 0.128125, 0.3, 0.52455.

x x x x
x x x x
= − = − = − = −

= = = =
 

При этом удалось достичь среднеквадратичной ошибки MSE = 0.000462, 

что тоже является достаточно качественным результатом аппроксимации, 

подтверждённым визуально. На рис. 5.7 синим цветом показан график исходной 



189 

функции (5.2), а красным – алгебраическая кривая, аппроксимирующая 

комбинацию синусов с разными частотами на отрезке [ ]1,1− . 

 
Рисунок 5.7. Визуализация алгебраической кривой, аппроксимирующей 

комбинацию синусов с разными частотами на отрезке [ ]1,1−  

 

Пример 3. Аппроксимация сплайна гладкости С4. Сплайн является 

наиболее универсальной кривой, которая нашла широчайшее применение в 

системах геометрического моделирования и автоматизированного 

проектирования. Их кусочная структура обеспечивает локальное управление 

формой при сохранении заданной гладкости. К особенностям сплайна относится 

то, что эта функция кусочная и требует стыковки между собой для обеспечения 

необходимого порядка гладкости. Аппроксимировав сплайн единой 

непрерывной алгебраической кривой с гладкостью C∞ , мы решаем эту проблему. 

В качестве примера возьмем интерполяционный сплайн, составленный из 

полиномов 5-й степени, с непрерывностью производных до 4-го порядка 

включительно (C⁴-гладкость) и построим его через 6 исходных точек – узлов 

интерполяции: [ ] [ ] [ ] [ ] [ ] [ ]1 2 3 4 5 60,0 ,  20,0 ,  45, 47 ,  55,335 ,  57,26 ,  62,387A A A A A A− . 

Для аппроксимации сплайна будем использовать интерполяционную 

кривую 5-го порядка, которая описывается точечным уравнением (4.25). 
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В результате оптимизации были найдены следующие узлы оптимальные 

для аппроксимации сплайна: 

2 3 4 5 6 22.169644,  35.376097,  44.698286,  51.476,  57.123197x x x x x= = = = = . 

В результате получена алгебраическая кривая, аппроксимирующая сплайн 

С4, которая описывается системой параметрических уравнений: 

( )( )( )
( )( )( )( )

2 2

2

320.19785 1.383019 0.05275 0.34039 1.83595 1.22856

450355.86111 0.14499 0.51387 1.11087 1.72689 0.74554

x t t t t t t

y t t t t t t

 = − − − + − +


= − − − − − +
 

При этом среднеквадратичная ошибка по отношению к сплайну находится 

на уровне MSE = 0.469, что для выбранных координат узлов интерполяции 

считается качественным результатом, подтверждённым визуально. 

 

 
Рисунок 5.7. Аппроксимация сплайна гладкости С4 

 

Как видно из рис. 5.7 интерполяционная кривая 5-го порядка с высокой 

точностью аппроксимирует сплайн С4 и позволяет представить его в качестве 

единой алгебраической кривой с гладкостью C∞ . Ключевой особенностью 

такого подхода является отказ от исходных узлов интерполяции (на рис. 5.7 

показаны чёрным цветом) и поиск оптимальных узлов аппроксимации (на рис. 

5.7 показаны красным цветом). При этом в некоторых случаях исходные узлы 

интерполяции и оптимальные узлы аппроксимации могут совпадать. 
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ЗАКЛЮЧЕНИЕ 
 

В заключении, хотелось бы отметить людей, которые помимо автора 

монографии принимали значительный вклад в развитие геометрических и 

вычислительных алгоритмов параметризации кривых линий в точечном 

исчислении, нашедших своё отражение в монографии: Балюба И.Г., 

Бездитный А.А., Горягин Б.Ф., Давыденко И.П., Найдыш В.М., Полищук В.И. 

Стараниями этих учёных-геометров были получены важные теоретические и 

прикладные результаты, систематизированные и представленные в данном 

издании. 

Первая часть цикла монографий о параметризации геометрических 

объектов в точечном исчислении посвящена моделированию кривых линий по 

заданным геометрическим условиям. Она представляет собой систематическое 

изложение теории и практики применения точечного исчисления для 

моделирования кривых различной природы и сложности. Проведенное 

исследование подтвердило высокую эффективность аппарата точечного 

исчисления как универсального математического инструмента для решения 

широкого круга задач геометрического моделирования. 

Основные научные и практические результаты работы заключаются в 

следующем: 

1. Систематизирован комплекс методов точечного исчисления, 

включающий метод проецирования на оси глобальной системы координат, 

метод подвижного симплекса, а также доказательство ключевых теорем (о 

площадях треугольников, о простых отношениях, S-теорема, V-теорема), 

составивших теоретический фундамент для геометрического моделирования 

кривых линий. 

2. Приведена система параметризации кривых 2-го порядка (эллипса, 

окружности, гиперболы, параболы), охватывающая различные подходы: от 

классических параметризаций через центральный угол и фокальные параметры 
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до современных методов с использованием инженерного дискриминанта и 

параметризации Чевы. 

3. Представлены оригинальные параметризации кривых линий 

полученные символьным методом, в избыточной параметризации, заменой 

параметра плоской кривой, моделирование циклоиды с касательными в 

начальной и конечной точках и др. Особого внимания заслуживает уравнение 

дуги обвода, представленное в общем виде с помощью двух свободных функций. 

4. Описаны конструктивные алгоритмы моделирования кривых одного 

отношения, включая кривые Безье 3-го порядка, кривые двойного 

соприкосновения, замкнутые алгебраические кривые, кривые на основе 

конфигурации Дезарга и др. Предложенные методы позволяют эффективно 

решать задачи моделирования дуг обвода требуемого порядка гладкости. 

5. Создана полная система интерполяционных методов, охватывающая 

кривые от 2-го до n-го порядка включительно. Разработанные алгоритмы, 

реализованные в виде программных решений, позволяют строить 

интерполяционные кривые, точно проходящие через заданные точки, а также 

создавать адаптивные интерполяционные кривые, автоматически 

подстраивающиеся под характер исходных данных. Приведены примеры 

реализации предложенного метода для моделирования интерполяционных 

кривых не только на основе полиномиальных, но и дробно-рациональных, 

экспоненциальных и тригонометрических функций. 

6. Предложены эффективные методы аппроксимации, включая 

оригинальный алгоритм поиска оптимального расположения узлов 

аппроксимации. Продемонстрирована возможность точного приближения 

сложных функций, таких как функция Рунге, эллипса в форме, содержащей 

радикал, комбинации синусов с разными частотами, сплайна гладкости С4. 

Теоретическая значимость монографии определяется: 

− систематизацией и развитием математического аппарата точечного 

исчисления; 
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− созданием единой методологии параметрического моделирования 

кривых в точечном исчислении; 

− доказательством теорем, устанавливающих взаимосвязи между 

геометрическими объектами в точечном представлении. 

Практическая ценность приведенных исследований заключается в: 

− представлении готовых к применению алгоритмов геометрического 

моделирования кривых линий; 

− описании методов геометрического моделирования кривых линий, 

применимых в CAD/CAM-системах, компьютерной графике и инженерном 

проектировании; 

− возможности использования результатов в архитектурном 

проектировании, дизайне технических форм и других прикладных областях. 

Перспективы дальнейшей работы заключаются в: 

1. Развитии методов точечного исчисления для моделирования 

поверхностей и геометрических тел, как выделенной части пространства, что 

составит содержание второй и третьей частей монографии. 

2. Создании специализированного программного обеспечения, 

реализующего разработанные алгоритмы. 

3. Адаптации методов для решения конкретных прикладных задач в 

машиностроении, строительстве и архитектуре. 

4. Исследовании возможностей применения точечного исчисления в 

смежных областях – компьютерном зрении, робототехнике, медицинской 

визуализации и др. 
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