Министерство образования и науки Российской Федерации Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «Нижегородский государственный архитектурно-строительный университет»

Кафедра оснований и фундаментов

Расчет оснований по несущей способности

Методические указания для студентов направления 270800.62 «Строительство», специальности 271101.65 «Строительство уникальных зданий и сооружений»

Нижний Новгород ННГАСУ 2015

Министерство образования и науки Российской Федерации Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «Нижегородский государственный архитектурно-строительный университет»

Кафедра оснований и фундаментов

Расчет оснований по несущей способности

Методические указания для студентов направления 270800.62 «Строительство», специальности 271101.65 «Строительство уникальных зданий и сооружений»

Нижний Новгород ННГАСУ 2015 УДК 624.15(075)

Расчет оснований по несущей способности. Методические указания для студентов направления 270800.62 «Строительство», специальности 271101.65 «Строительство уникальных зданий и сооружений» — Н.Новгород: ННГАСУ, 2015

Рассмотрены примеры расчета основания прямоугольного и круглого фундамента, расчета на глубокий сдвиг фундамента с наклонной подошвой, а так же расчет устойчивости фундамента по схеме плоского сдвига. Расчеты несущей способности выполнены по методике СП 50-101-2004 «Проектирование и устройство оснований и фундаментов зданий и сооружений».

Предназначены для дипломного проектирования, а так же проведения практических занятий по дисциплине «Основания и фундаменты».

Составители: Е.О Сучкова

А.А Кочеткова С.Я Скворцов С.П Нагаева

[©] Нижегородский государственный архитектурно-строительный университет, 2015.

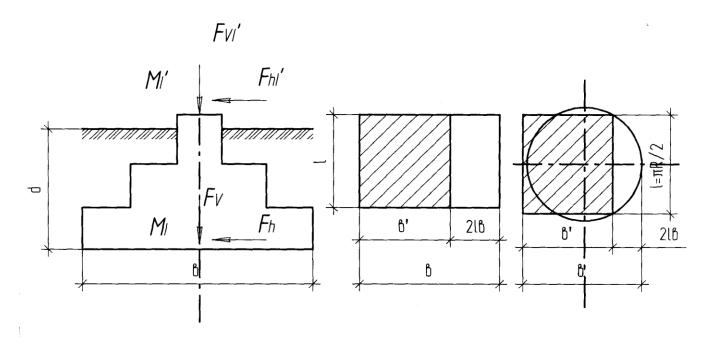
Введение:

Расчет оснований по несущей способности должен производится в случаях, если:

- а.) на основание передаются значительные горизонтальные нагрузки (подпорные стены, фундаменты распорных конструкций и т.п), в том числе и сейсмические;
- б.) сооружение расположено на откосе или вблизи откоса;
- в.) основание сложено медленно уплотняющимися водонасыщенными пылеватоглинистыми и биогенными грунтами;
- г.) основание сложено скальными грунтами.

Цель расчета оснований по несущей способности является обеспечение прочности и устойчивости оснований, а так же недопущение сдвига фундамента по подошве и его опрокидывания. При расчете основания по несущей способности следует учитывать, что возможны различные схемы потери устойчивости, например, в виде плоского сдвига по подошве фундамента или ниже ее. При выборе схемы потери устойчивости следует учитывать характер нагрузок и их равнодействующей (вертикальность, наклон, эксцентриситет), форму фундамента (ленточный, прямоугольный), характер подошвы фундамента (горизонтальность, наклон), наличие связей фундамента с другими элементами здания, вид и свойства грунтов.

Основания ленточного фундамента следует проверять на устойчивость только в направлении короткой стороны (ширины) фундамента, а прямоугольного, квадратного и круглого – в направлении действия момента или направления ее горизонтальной составляющей.


Задача 1

РАСЧЕТ НЕСУЩЕЙ СПОСОБНОСТИ ОСНОВАНИЯ ПРЯМОУГОЛЬНОГО (КРУГЛОГО) ФУНДАМЕНТА

Рассчитать несущую способность основания прямоугольного (круглого) фундамента. Размеры фундамента в плане получены из расчета по ІІ группе предельных состояний с учетом веса фундамента и грунта на его обрезах.

Алгоритм решения

1.) Схема к определению приведенных размеров подошвы фундамента

- 2.) По табл.1 определяем нормативные значения прочностных характеристик ϕ_n и c_n .
- 3.) Расчетные значения прочностных характеристик для расчета по I группе предельных состояний:

Если нормативное значение угла внутреннего трения ϕ_n , удельного сцепления c_n приняты по таблицам, то расчетные значения характеристик в этом случае принимаются при следующих значениях коэффициента надежности по грунту:

- $-\;$ в расчете оснований по деформациям $\gamma_q=1,0$
- в расчетах оснований по несущей способности для удельного сцепления $\gamma_q = 1,5,$ для внутреннего трения песков $\gamma_q = 1,1,$ пылевато—глинистых $\gamma_q = 1,15.$

$$\varphi_I = \frac{\varphi_n}{\gamma_n}$$
(1)

$$c_I = \frac{c_n}{\gamma_g} K\Pi a$$
 (2)

4.) Приводим все нагрузки к подошве фундамента. Равнодействующая вертикальных расчетных нагрузок в уровне подошвы фундамента с учетом веса фундамента и грунта на его обрезах

$$F_{V} = F'_{V1} + e \times l \times d \times \gamma, \quad \kappa H$$
 (3)

где F'_{V1} — равнодействующая всех вертикальных нагрузок в уровне верха фундамента для расчетов по первой группе предельных состояний, кН

- в сторона подошвы фундамента, направление которой совпадает с направлением действия горизонтальной составляющей нагрузки и возможным направлением потери устойчивости, м
- l длина прямоугольного фундамента или условная длина круглого фундамента, м
 - d глубина заложения фундамента, м

 γ – удельный вес фундамента и грунта на его обрезах, к H/M^3

$$\gamma = \frac{\gamma_n + \gamma_6}{2}, \quad \kappa H/M^3 \tag{4}$$

5.) Результирующий момент относительно центра тяжести подошвы

$$M_{I} = M_{I}' - F_{hI}' \times d, \quad \kappa H \cdot M$$
 (5)

где: M_{I}' – равнодействующая моментов в уровне верха фундамента для расчетов по первой группе предельных состояний, кH·м;

 F_{hI}' – равнодействующая горизонтальных нагрузок в уровне верха фундамента для расчетов по I группе предельных состояний кH.

6.) Эксцентриситет приложения равнодействующей вертикальных расчетных нагрузок:

$$e_b = \frac{M_I}{F_n}, \mathbf{m} \tag{6}$$

7.) Приведенные размеры подошвы фундамента:

$$e' = e - 2e_b, M$$
 (7)
 $l' = l, M$

8.) Коэффициент отношения:

$$\eta = \frac{l}{l} , \qquad (8)$$

где l и в — соответственно длина и ширина подошвы фундамента, принимаемые в случае внецентренного приложения равнодействующей нагрузки равным приведенным значением l' и в' если l/в < 1, то следует принимать $\eta = 1.0$.

9.) Коэффициенты формы фундамента:

$$\xi \gamma = 1 - 0.25/\eta,$$
 (9)
 $\xi q = 1 + 1.5/\eta,$
 $\xi c = 1 + 0.3/\eta,$

При соотношении сторон подошвы фундамента $\eta > 5$ фундамент рассматривается как ленточный и коэффициенты $\xi \gamma$, ξq , ξc принимаются равными 1.

10.) Вертикальную составляющую силы предельного сопротивления N_u основания, сложенного нескальными грунтами и если фундамент имеет плоскую подошву и грунты основания ниже подошвы однородны до глубины не менее ее ширины, допускается определять по формуле:

$$N_{u} = e'l' (N_{\gamma}\xi_{\gamma} \times e' \times \gamma_{I} + N_{q} \times \xi_{q} \times d \times \gamma_{I}' + N_{c} \times \xi_{c} \times c_{I}), \quad M$$
 (10)

где: γ_I и γ_I – удельный вес грунта для расчета по I группе предельных состояний залегающих соответственно ниже и выше подошвы фундамента, к H/m^3

Расчет по формуле (10) допускается выполнять, если соблюдается условие $tg \ \delta < \sin \phi$, где $tg \ \delta = F_b/F_v$, $(F_b = F_{bI})$.

По tg δ находим δ . $\sin \varphi = \sin \varphi_I$.

Безразмерные коэффициенты несущей способности определяемые по таблице 2 N_{γ} , $N_{\rm q}$, $N_{\rm c}$ = f ($\phi_{\rm I}$, δ).

11.) Расчет оснований по несущей способности проверяется исходя из условия:

$$F \le \gamma_c F_u / \gamma_n, \tag{11}$$

где F – расчетная нагрузка на основание, кН;

 $F_{u} = N_{u}$ сила предельного сопротивления основания, [кH];

γ_с – коэффициент условий работы, принимаемый:

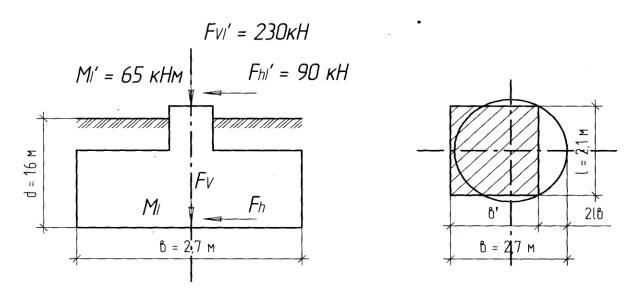
- для песков, кроме пылеватых $\gamma_c = 1.0$
- для пылеватых песков и пылевато—глинистых грунтов в стабилизированном состоянии $\gamma_c = 0.9$
- для пылевато—глинистых грунтов в нестабилизированном состоянии
 $\gamma_c = 0.85$;

 γ_n – коэффициент надежности по назначению сооружения

для здания I класса – 1,2

II класса – 1,15

III класса -1,1


12.) В случае невыполнения условия увеличиваем размеры фундамента. Размеры фундамента должны быть кратными 300 мм. Не пересчитывая вес фундамента и грунта на его обрезах, находим вертикальную составляющую силы предельного сопротивления N_u . Проверяем условие (11). Принимаем окончательные размеры подошвы фундамента.

Пример решения задачи

(вариант 20)

Дано: e=0.85, $J_L=0.5$, $\gamma_n=17.7$ кH/м, $\gamma_n{'}=18.1$ кH/м, грунт — глина, $F_{VI}{'}=230$ кH, $F_{hI}{'}=90$ кH, $M_I{'}=65$ кНм, II класс здания, $\varepsilon=2.7$ м, d=1.6 м, $l=\pi R/2$ — фундамент круглый.

1.) Схема к определенно приведенных размеров подошвы фундамента

- 2.) По табл.1 определяем нормативные значения прочностных характеристик: грунт глина, $e=0.85,\, J_L=0.5 \to \phi_n=16^{\rm o}\, C_n=43\,$ кПа
- 3.) Расчетные значения прочностных характеристик для расчета по I группе предельных состояний:

$$\varphi_I = \frac{16}{1.15} = 14^{\circ}$$

$$C_I = \frac{43}{1.5} = 28.7 \quad \kappa \Pi a$$

4.) Равнодействующая вертикальных расчетных нагрузок в уровне подошвы фундамента с учетом веса фундамента и грунта на его обрезах:

$$F_V = 230 + 2.7 \times 2.1 \times 1.6 \times 21.3 = 423 \text{ kH}$$

$$\gamma = \frac{18.1 + 24.5}{2} = 21.3 \quad \kappa H / M^3$$

5.) Результирующий момент относительно центра тяжести подошвы

$$M_I = 65 - 90 \times 1.6 = -79 \text{ kHm}$$

6.) Эксцентриситет приложения равнодействующей вертикальных расчетных нагрузок:

$$e_{\rm g} = 79/423 = 0.19 \text{ M}$$

7.) Приведенные размеры подошвы фундамента:

$$e' = 2.7 - 2 \times 0.19 \approx 2.4 \text{ m}$$

$$l' = l = 2.1 \text{ M}$$

8.) Коэффициент отношения:

$$\eta = 2.1/2.4 = 0.88 < 1$$
 значит принимаем $\eta = 1.0$

9.) Коэффициенты формы фундамента

$$\xi \gamma = 1 - 0.25/1 = 0.75$$

$$\xi q = 1 + 1,5/1 = 2.5$$

$$\xi c = 1 + 0.3/1 = 1.3$$

10.) Вертикальная составляющая силы предельного сопротивления:

$$N_u = 2.4 \times 2.1 \ (1.16 \times 0.75 \times 2.4 \times 17.7 + 2.998 \times 2.5 \times 1.6 \times 18.1 + 5.75 \times 1.3 \times 28.7) = 2361 \ \text{kH}$$

т.к. tg
$$\delta = 90/423 = 0.21 < \sin \phi_I = 14^\circ = 0.24$$
, при $\delta = 12^\circ$ и $\phi_I = 14^\circ$

$$N\gamma = 1.16$$

$$Nq = 2.998$$

$$Nc = 5.75$$

11.) Расчет оснований по несущей способности проверяется из условия

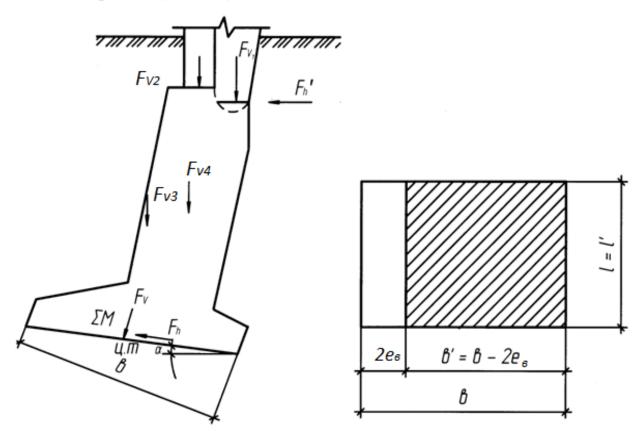
$$F \leq \gamma_c \; F_{\textit{u}} / \; \gamma_n$$

 $F = 423 \text{ кH}, \ \gamma_c = 0.9 - для пылевато–глинистых грунтов в в стабилизированном состоянии, <math>F_u = N_u = 2361 \text{ кH}., \ \gamma_n = 1.15 - для зданий II класса.$

$$423 \text{ kH} < 0.9 \times 2361/1.15 = 1848 \text{ kH}.$$

12.) Условие выполняется следовательно размеры фундамента принимаются равными $e=2.4~\mathrm{m},\ l=2.1~\mathrm{m}$

Задача 2


АНАЛИТИЧЕСКИЙ МЕТОД РАСЧЕТА НА ГЛУБОКИЙ СДВИГ ФУНДАМЕНТОВ С НАКЛОННОЙ ПОДОШВОЙ ПРИ ДЕЙСТВИИ ВНЕЦЕНТРАЛЬНОЙ НАКЛОННОЙ НАГРУЗКИ

Фундаменты с наклонной подошвой целесообразно применять вместо фундаментов с горизонтальной подошвой в тех случаях, когда для последних не выполняется условие tg $\delta < \sin \phi_I$. Коэффициенты формы и приведенные размеры фундамента определяются так же, как и для фундаментов с горизонтальной подошвой.

Требуется рассчитать несущую способность основания фундамента с наклонной подошвой.

Алгоритм решения

1.) Составим расчетную схему:

2.) Расчетные значения прочностных характеристик грунта основания (определяются по п.3 задачи №1)

3.) Равнодействующая вертикальных расчетных нагрузок на уровне подошвы фундамента:

$$F_{v'} = F_{v1}' + F_{v2}' + F_{v3}' + F_{v4}', \text{ KH}$$
 (12)

где F_{V1} - вертикальная составляющая внешних нагрузок, кН

 F_{V2} - вес стеновых панелей, кН

 $F_{V3}{}'$ - вес грунта на уступах фундамента, кН

 F_{V4} - вес фундамента, кН

4.) Фактический угол наклона к вертикали равнодействующей всех сил:

$$\delta' = arctg \frac{F_h'}{F_h'}, \quad \circ \tag{13}$$

где F_h - горизонтальная составляющая внешних нагрузок, κH

5.) Угол между направлением равнодействующей и нормалью к подошве:

$$\delta = \delta' - \alpha$$
, ° (14)

где α – угол наклона подошвы фундамента к горизонту, $^{\circ}$

6.) Составляющая равнодействующей всех нагрузок (нормаль к подошве):

$$F_{\nu} = \frac{F_{\nu}' \cos \delta}{\cos \delta'}, \quad \kappa H \tag{15}$$

7.) Составляющая касательная к подошве:

$$F_h = \frac{F_v' \sin \delta}{\sin \delta'}, \text{ KH}$$
 (16)

8.) Эксцентриситет приложения составляющей нагрузок (нормалью к подошве):

$$e_{\scriptscriptstyle g} = \frac{M}{F_{\scriptscriptstyle V}}, \quad _{\rm M} \tag{17}$$

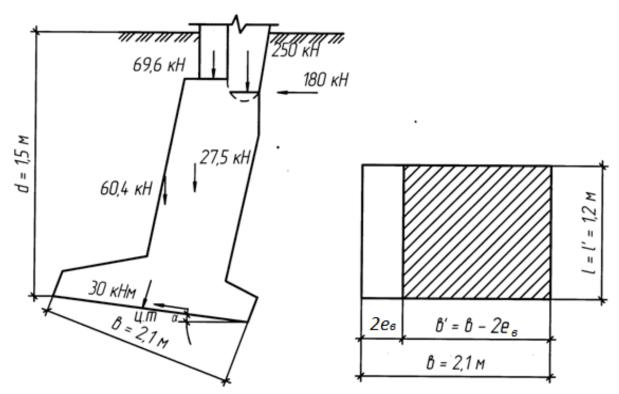
где M – момент относительно центра тяжести подошвы фундамента, к ${
m H\cdot m}$

- 9.) Приведенные размеры подошвы фундамента определяем так же как в п.7 задачи №1
- 10.) Коэффициенты формы определяем по п.8,9 задача №1
- 11.) Коэффициенты несущей способности N_{γ} и N_{c} определяем по таблице 2

$$N_q = \frac{N_c}{ctg\,\varphi_I} + 1,\tag{18}$$

12.) Проверяем условие:

$$tg\delta = \frac{F_h}{F_v} < \sin \varphi_I \tag{19}$$


- 13.) Составляющую силы предельного сопротивления основания, вычисляем по формуле 10.
- 14.) Проверяем условие 11

Пример решения задачи

(вариант 20)

Дано: в основании фундамента залегают пылеватые пески с ϕ_n = °, C_n = 2 кПа, α = 20°, α = 2,1 м, α = 1,2 м, α = 2,1 м, α = 2,1 м, α = 1,2 м, α = 2,1 м, α = 1,2 м, α = 1,2 м, α = 1,5 м, сооружение II класса.

1.) Составляем расчетную схему:

2.) Расчетные значения прочностных характеристик:

$$φ_I = 26 / 1,1 = 24^{\circ}$$
 $C_I = 2 / 1,5 = 1,3 κΠα$

3.) Равнодействующая вертикальных расчетных нагрузок на уровне подошвы фундамента:

$$F_{V}' = 250 + 69.6 + 60.4 + 27.5 = 407.5 \text{ kH}$$

4.) Фактический угол наклона к вертикальной равнодействующей всех сил:

$$\delta' = arctg \frac{180}{407.5} = 24^\circ$$

5.) Угол между направлением равнодействующей и нормальной к подошве:

$$\delta = 24^{\circ} - 20^{\circ} = 4^{\circ}$$

б.) Составляющая равнодействующей всех нагрузок:

$$F_{v} = \frac{407,5\cos 4^{\circ}}{\cos 24^{\circ}} = \frac{407,5\times 0,998}{0,914} = 445 \qquad \kappa H$$

7.) Составляющая касательная к подошве

$$F_h = \frac{407.5 \sin 4^\circ}{\sin 24^\circ} = \frac{407.5 \times 0.07}{0.914} = 31.2 \quad \kappa H$$

8.) Эксцентриситет приложения составляющей нагрузки:

$$e_{\scriptscriptstyle g} = \frac{30}{445} = 0.07$$
 M

9.) Приведенные размеры подошвы фундамента:

$$l' = l = 1,2 \text{ M}$$

 $e' = e - 2e_e = 2,1 - 2 \times 0,07 = 1,96 \text{ M}$

10.) Коэффициенты формы:

$$\eta = l'/ s' = 0.61 < 1$$
, η принимаем равным 1, тогда:

$$\xi_{\gamma} = 1 - (0.25 / 1) = 0.75$$

$$\xi_q = 1 + (1,5/1) = 2,5$$

$$\xi_c = 1 + (0.3 / 1) = 1.3$$

11.) Коэффициенты несущей способности:

$$N_{\gamma} = 2,97$$
 $N_{c} = 12,54$

$$N_{q} = \frac{12,54}{ctg 24^{\circ}} + 1 = \frac{12,54}{2,23} + 1 = 6,62$$

12.) проверяем условие

$$tg\frac{31,2}{445} = 4^{\circ}$$
 < $\sin 24^{\circ}$

0.07 < 0.41 — условие выполняется, значит можно мспользовать формулу 10.

13.) Составляющая силы предельного сопротивления основания:

$$N_u = 1,96 \times 1,2 \ (2,97 \times 0,75 \times 1,96 \times 17,1 + 6,62 \times 2,5 \times 17,1 \times 1,5 \times 12,54 \times 1,3 \times 1,3) = 1224 \ \mathrm{kH}$$

14.) Проверяем условие 11:

$$F \leq \gamma_c \times F_u \ / \ \gamma_n, \longrightarrow \ 445 \ \kappa H < (0.9 \times 1224) \ / \ 1.15 = 958 \ \kappa H$$

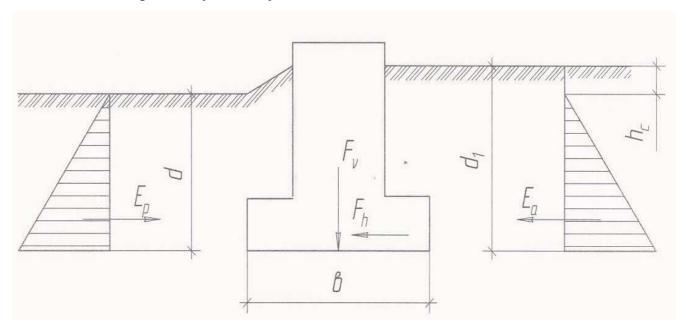
Несущая способность обеспечена.

Задача 3

РАСЧЕТ УСТОЙЧИВОСТИ ФУНДАМЕНТА ПО СХЕМЕ ПЛОСКОГО СДВИГА

Расчет фундамента на сдвиг по его подошве или по подошве грунтовой подушке производится при действии горизонтальной составляющей нагрузки на фундамент в случае нестабилизированного состояния грунтов основания, а так же и стабилизированного, если не выполняется условие tg $\delta < \sin \phi_I$. При расчете на плоский сдвиг применяется формула:

$$\sum F_{sa} \le \gamma_c \sum F_{sr} / \gamma_n \tag{20}$$


где $\sum F_{sr}$ и $\sum F_{sa}$ суммы проекций на плоскость скольжения расчетных сил, соответственно удерживающих и сдвигающих, кH;

 γ_c и γ_n – коэффициенты, принимаемые по п. 11 задачи №1.

Требуется рассчитать фундамент распорной системы по схеме плоского сдвига по подошве.

Алгоритм решения

1.) Составляем расчетную схему:

- 2.) Расчетные значения прочностных характеристик грунта основания рассчитываем по формулам 1 и 2
- 3.) Проверяем выполнение условия: tg $\delta < \sin \phi_I$, здесь tg $\delta = F_h/F_\nu$. Если условие не выполняется, то формула определения tg δ не применима. Расчет следует производить по схеме плоского сдвига.
- 4.) Для грунта засыпки принимаем:

$$\begin{split} \gamma_{I} &' = 0.95 \; \gamma_{I}, \quad \kappa H/\text{m}^3 \\ c_{I} &' = 0.5 \; c_{I}, \quad \kappa \Pi a \\ \phi_{I} &' = 0.9 \; \phi_{I}, \quad \, ^{\circ} \end{split}$$

5.) Равнодействующая пассивного давления грунта на вертикальную грань фундамента:

$$E_{p} = \frac{1}{2} \gamma_{I}' d\lambda_{p} + \frac{c_{I}' d}{tg \varphi_{I}'} \times (\lambda_{p} - 1), \quad \text{KH}$$
(21)

где d — глубина заложения фундамента от уровня планировки или со стороны возможного выпора грунта, м.

 λ_p – коэффициент пассивного давления:

$$\lambda_{\rm p} = {\rm tg}^2 (45^{\rm o} + \varphi_{\rm I}'/2),$$
 (22)

6.) Равнодействующая активного давления грунта:

$$E_{a} = \frac{1}{2} \left(\gamma_{I}' \times d_{I} \times \lambda_{a} - 2c_{I}' \times \sqrt{\lambda_{a}} \right) \times (d_{I} - h_{c}), \quad \text{KH}$$
 (23)

где d_1 — глубина заложения фундамента от уровня пола или со стороны, противоположной возможному выпору грунта, м;

 λ_a – коэффициент активного давления грунта:

$$\lambda_a = tg^2 (45^\circ - \phi_I'/2),$$
 (24)

$$h_c = \frac{2c_I \sqrt{\lambda_a}}{\gamma_I \times \lambda_a}, \quad M$$
 (25)

7.) Сумма удерживающих сил:

$$\sum F_{sr} = (F_{\nu} - U) g \varphi_I + A \times c_I + E_p, \quad \text{kH}$$
 (26)

где F_v – нормальная к плоскости скольжения составляющая расчетной нагрузки на фундамент, кH;

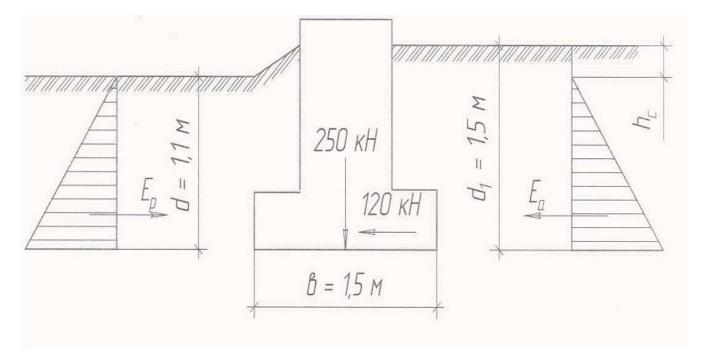
U – сила гидростатического противодавления (при уровне грунтовых вод выше подошвы фундамента), кН;

A – площадь подошвы фундамента, M^2 .

8.) Сумма сдвигающих сил:

$$\sum F_{sa} = F_h + E_a , \qquad \text{kH}$$
 (27)

где F_h — касательная к плоскости скольжения, составляющая нагрузки на фундамент, кH.


9. Проверяем условие 20

Пример решения задачи

(вариант 20)

Дано: грунт основания супесь, $c_n = 8$ кПа, $\phi_n = 24^\circ$; $F_v = 250$ кН; $F_h = 120$ кН; d = 1,1; $d_1 = 1,5$ м. Сооружение III класса, e = 1,5 м; l = 1,2 м; $\gamma_I = 18$ кН/м³.

1.) Расчетная схема:

2) Расчетные значения прочностных характеристик грунта основания:

$$c_I = 8/1,5 = 5,3$$
 кПа

$$\phi_I = 24/1, 1 = 22^{\circ}$$

3) Проверяем выполнение условия: tg $\delta < sin \phi_I$.

$$tg \delta = 120/250 = 0,48$$

$$\sin 22^{\circ} = 0.375$$

$$tg~\delta=0.48>sin~\phi_I=0.375$$

Условие не выполняется, значит, расчет следует производить по схеме плоского сдвига.

4.) для грунта засыпки принимаем:

$$\gamma_{I}' = 0.95 \ \gamma_{I} = 0.95 \times 18 = 17.1 \ \text{kH/m}^{3}$$

$$c_{\text{I}}' = 0,5 \ c_{\text{I}} = 0,5 \times 5,3 = 2,7 \ к Па$$

$$\phi_{\mathrm{I}} \, \check{} = 0.9 \,\, \phi_{\mathrm{I}} = 0.9 \times 22 = 20^{\text{o}}$$

5.) Равнодействующая пассивного давления грунта на вертикальную грань фундамента:

$$E_p = \frac{1}{2} \times 17,1 \times 1,1 \times 2,04 + \frac{2,7 \times 1,1}{tg \, 20'} \times (2,04-1) = 26,9 \quad \kappa H$$

где
$$\lambda_a = tg^2 (45^\circ + 20^\circ/2) = 2,04$$

6.) Равнодействующая активного давления грунта:

$$E_a = \frac{1}{2} (17,1 \times 1,5 \times 0,49 - 2 \times 2,7 \times \sqrt{0,49}) \times (1,5 - 0,45) = 4,6 \quad \kappa H$$

где
$$\lambda_a = tg^2 (45^\circ - 20^\circ/2)$$

$$h_c = \frac{2 \times 2,7 \times \sqrt{0,49}}{17,1 \times 0,49} = 0,45 \qquad M$$

7.) Сумма удерживающих сил:

$$\sum F_{\mathit{sr}} = ((250-0) \times tg \ 22^{o} + 1,5 \times 1,2 \times 5,3 \ +26,9) = 137,4 \ \kappa H$$

8.) Сумма сдвигающих сил:

$$\sum F_{sa} = 120 + 4,6 = 124,6 \text{ } \text{к} \Pi \text{a}$$

9.) Проверяем условие 20

$$\sum F_{sa} = 124.6 > \frac{\gamma_c \times \sum F_{sr}}{\gamma_m} = \frac{0.9 \times 137.4}{1.1} = 112.4 \quad \kappa H$$

Устойчивость фундамента против сдвига по подошве не обеспечена. Увеличение размеров подошвы фундамента практически не даст эффекта, поэтому целесообразнее устройство фундамента с наклонной подошвой.

Варианты к задаче №1

Варианты																				
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Хар-ки																				
e	0,45	0,55	0,65	0,75	0,45	0,55	0,65	0,75	0,85	0,85	0,45	0,55	0,65	0,75	0,85	0,95	0,55	0,65	0,75	0,85
J_{L}	0,1	0,15	0,2	0,25	0,3	0,35	0,4	0,45	0,5	0,55	0,1	0,2	0,3	0,4	0,5	0,6	0,2	0,3	0,4	0,5
$\gamma_n, \kappa H/M^3$	15,9	15,8	16,0	16,1	16,4	16,2	16,5	16,6	16,8	16,9	16,4	17,1	17,2	17,4	17,3	16,9	17,4	17,7	17,6	17,7
γ_n' , $\kappa H/m^3$	16,1	16,2	16,4	16,0	16,2	16,3	16,3	17,0	17,1	16,5	16,9	17,2	17,4	16,9	16,7	17,5	16,4	18,0	17,5	18,1
F _{VI} ', κH	200	210	220	230	240	250	180	190	200	210	220	230	240	250	180	190	200	210	220	230
F _{hI} ', κΗ	50	60	70	80	90	100	50	60	65	80	90	80	50	60	55	80	70	55	80	90
Мі′,кНм	40	50	60	70	75	80	47	55	60	75	76	80	41	50	48	55	68	77	72	65
класс	I	II	III	I	II	III	I	II	III	I	II	III	I	II	III	I	II	III	I	II
здания																				
<i>6</i> , M	1,2	1,5	1,8	2,1	2,4	2,7	3,0	1,2	1,5	1,8	2,1	2,4	2,7	3,0	1,2	1,5	1,8	2,1	2,4	2,7
d , м	1,1	1,15	1,2	1,25	1,3	1,35	1,4	1,45	1,5	1,1	1,15	1,2	1,25	1,3	1,35	1,4	1,45	1,5	1,55	1,6
<i>l</i> , м	0,6	0,9	1,2	1,5	1,8	2,1	2,4	0,6	0,9	1,2	$1,2$ $\pi R/2$									
грунт	супесь									суглинок						глина				

Задание с гибкой конструктивной схемой

N	
$\hat{}$	
$\overline{}$	

	Варианты к задаче №2																			
Варианты Хар-ки	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
грунт						В	основ	ании –	- пылеі	ватые	пески	$\gamma_{\rm I} = \gamma$	$Y_{\rm I}'=17$,1 кH/	м ³					
φ _n , [°]	16,5	17	17,5	18	18,5	19	19,5	20	20,5	20	23	24	25	26	27	28	29	30	31	26
С _п , [кПа]	4	5	6	7	8	2	3	4	5	6	7	8	2	3	4	5	6	7	8	2
α, [°]	20	20	20	20	20	22	22	22	22	24	24	24	24	24	20	20	20	20	20	20
<i>6</i> , M	2,1	2,4	2,7	1,5	1,8	2,1	2,4	2,7	1,5	1,8	2,1	2,4	2,7	1,5	1,8	2,1	2,4	1,5	1,8	2,1
<i>l</i> , м	1,5	1,5	1,5	1,2	1,2	1,5	1,5	1,5	1,2	1,2	1,2	1,5	1,5	1,2	1,5	1,5	1,5	1,2	1,2	1,2
d, M	1,5	1,5	1,7	1,7	1,7	1,6	1,6	1,6	1,5	1,5	1,5	1,7	1,7	1,7	1,6	1,6	1,6	1,5	1,5	1,5
класс сооружения			I класс				Ι	I класс				I класс				II класс				
F _{V1} ′, κΗ	210	220	230	240	250	210	220	230	240	250	210	220	230	240	250	210	220	230	240	250
F _{V2} ΄, κΗ	94	90	87	72	65	85	79	77	69	65	89	75,2	76,1	77	80	80	75,5	70,4	70	69,6
F _{V3} ′, κΗ	60,4	65,4	78	79,4	80,1	70,2	68	68,4	65,5	70	76,2	74,2	69	65	84,2	62,1	60,3	70,2	68,2	60,4
F _{V4} ′, κΗ	25,4	29	28,1	25	26,3	27,1	27,5	28,5	29,4	29	28,6	28,3	27,9	27,4	26,1	26,3	28	24,5	25	27,5
F _h ', κΗ	180	180	180	180	180	170	170	170	170	170	175	175	175	175	175	180	180	180	180	180
М, кНм	28	26	24	22	20	22	24	26	28	30	28	26	24	22	20	22	24	26	28	30

Варианты к задаче №3

Варианты	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Хар-ки																				
Грунт основания		супесь																		
с _п , кПа	17	16	15	14	13	12	11	10	9	8	17	16	15	14	13	12	11	10	9	8
φ _n , °	26	24	22	20	18	20	22	24	26	28	30	28	26	24	22	20	18	20	22	24
F _ν , κΗ	260	270	280	290	300	290	280	270	260	250	240	230	220	210	200	210	220	230	240	250
F _h , кН	90	100	110	120	130	140	150	160	150	140	130	120	110	100	90	80	90	100	110	120
d , м	1,0	1,1	1,15	1,2	1,25	1,3	1,35	1,4	1,45	1,5	1,55	1,5	1,45	1,4	1,35	1,3	1,25	1,2	1,15	1,1
d ₁ , м	1,1	1,3	1,5	1,6	1,6	1,6	1,65	1,7	1,75	1,75	1,8	1,7	1,7	1,7	1,6	1,6	1,6	1,5	1,5	1,5
класс сооружения		1	I класс	:	I	II класс					І класс					III класс				
в, м	1,2	1,5	1,8	2,1	2,4	2,7	2,4	2,1	1,8	1,5	1,2	1,5	1,8	2,1	2,4	2,7	2,4	2,1	1,8	1,5
<i>l</i> , м	0,9	0,9	0,9	1,2	1,2	1,2	1,5	1,5	1,5	0,9	0,9	0,9	1,2	1,2	1,2	1,5	1,5	1,5	1,2	1,2
$\gamma_{\rm I}, \kappa H/{ m m}^3$	22	20	20,5	21	22	23	20	19	19	18	18	17,5	18	19	20	21	22	21	20	18

Таблица 1 Нормативные значения удельного сцепления c_n , кПа (кгс/см²), угла внутреннего трения ϕ_n , \circ пылевато—глинистых нелессовых грунтов четвертичных отложений

Наименовани	е грунтов и пределы	Обознач.		Характерис	стики грунтов г	іри коэффициен	те пористост	и е, равном	
•	ных значений их теля текучести	хар-к грунтов	0,45	0,55	0,65	0,75	0,85	0,95	1,05
	$0 \le J_L \le 0.25$	c_n	21 (0,21)	17(0,17)	15 (0,15)	13 (0,13)	_	_	_
	0 = 0,23	φ_n	30	29	27	24	_	_	_
Супеси	$0.25 < J_L \le 0.75$	\mathcal{C}_n	19 (0.19)	15 (0,15)	13 (0,13)	11 (0,11)	9 (0,09)	_	_
	0,25 (0, _ 0, 15	φ_n	28	26	24	21	18	_	_
	$0 < J_L \le 0.25$	\mathcal{C}_n	47 (0,47)	37 (0,37)	31 (0,31)	25 (0,25)	22 (0,22)	19 (0,19)	_
	* **E = *,=*	φ_n	26	25	24	23	22	20	_
Суглинки	$0.25 < J_L \le 0.5$	\mathcal{C}_n	39 (0,39)	34 (0,34)	28 (0,28)	23 (0,23)	18 (0,18)	15 (0,15)	_
	3,25	φ_n	24	23	22	21	19	17	_
	$0.5 < J_L \le 0.75$	c_n	_	-	25 (0,25)	20 (0,20)	16 (0,16)	14 (0,14)	12 (0,12)
		φ_n	_	_	19	18	16	14	12
	$0 < J_L \le 0.25$	\mathcal{C}_n	_	81 (0,81)	68 (0,68)	54 (0,54)	47 (0,47)	41 (0,41)	36 (0,36)
	V V L = V)=V	φ_n	_	21	20	19	18	16	14
Глины	$0.25 < J_L \le 0.5$	\mathcal{C}_n	-	_	57 (0,57)	50 (0,50)	43 (0,43)	37 (0,37)	32 (0,32)
	5,25 \ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	φ_n	_	-	18	17	16	14	11
	$0.5 < J_L \le 0.75$	\mathcal{C}_n	-	_	45 (0,45)	41 (0,41)	36 (0,36)	33 (0,33)	29 (0,29)
	5,5 (VL = 0,75	φ_n	_	_	15	14	12	10	7

Таблица 2

Угол внутреннего трения грунта	Обозначение коэффициентов	Коэфф	ициенты ра			ности N ү і внешне	_			-	гикали
Угол вну трения	Обозня коэффи	0	5	10	15	20	25	30	35	40	45
	Νγ	0									
0	Nq	1,00	-	-	-	-	-	-	-	-	-
	Nc	5,14									
	Νγ	0,20	[0,05]	δ'=4,							
5	Nq	1,57	{1,26}	9	-	-	-	-	-	-	-
	Nc	6,49	[2,93]	,							
	Νγ	0,60	0,42	[0,12]	δ'=9,						
10	Nq	2,47	2,16	1,60	8	-	-	-	-	-	-
	Nc	8,34	6,57	[3,38]	O						
	Νγ	1,35	1,02	0,61	[0,21]	δ'=14					
15	Nq	3,94	3,45	2,84	{2,06}	,5	-	-	-	-	-
	Nc	10.98	9,13	6,88	[3,94]	,5					
	Νγ	2,88	2,18	1,47	0,82	[0,36]	δ'=18				
20	Nq	6,40	5,56	4,64	3,64	2,69	,9	-	-	-	-
	Nc	14,80	12,50	10,02	7,26	[4,65]	,,				
	Νγ	5,87	4,58	3,18	2,00	1,05	[0,58]	δ'=22			
25	Nq	10,66	9,17	7,65	6,13	4,58	3,60 5,58	,9	-	-	-
	Nc	20,72	17,53	14,26	10,99	7,68	(3,30)	,,			
	Νγ	12,39	9,43	6,72	4,44	2,63	1,29	[0,95]	δ'=26		
30	Nq	18,40	15,63	12,90	10,37	7,96	5,67	4,95 6,85	,5	-	-
	Nc	30,14	25,34	20,68	16,23	12,05	8,09	(0,00)	,5		
	Νγ	27,50	20,58	14,63	9,79	6,08	3,38	[1,60]	δ'=29		
35	Nq	33,30	27,86	22,77	18,12	13,94	10,24	\begin{cases} 7,04 \\ 8,63 \end{cases}	,8	-	-
	Nc	46,12	38,36	31,09	24,45	18,48	13,19	(-,)	,5		
	Νγ	66,01	48,30	33,84	22,56	14,18	8,26	4,30	2,79	δ'=32	
40	Nq	64,19	52,71	42,37	33,26	25,39	18,70	13,11	10,46 11,27	,7	-
	Nc	75,31	61,63	49,31	38,45	29,07	21,10	14,43		,,	
	Νγ	177,6	126,0	86,20	56,50	32,26	20,73	11,26	5,45	5,22	δ′=35
45	Nq	1	9	85,16	65,58	49,26	35,93	25,24	16,82	16,42 15,82	,2
	Nc	134,8	108,2	84,16	64,58	48,26	34,93	24,24	15,82		,2

Примечания:

При промежуточных значениях ϕ_I и δ коэффициенты N γ , Nq, Nc допускается определять по интерполяции. В фигурных скобках приведены значения коэффициентов несущей способности, соответствующие предельному значению угла наклона нагрузки δ' , исходя из условия tg δ < sin ϕ

РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

- 1. СНиП 2.02.01.83* Основания зданий и сооружений.-М.: Стройиздат, 1999*.
- 2. СП 50-101-2004 Проектирование и устройство оснований зданий и сооружений, 2004.
- 3. ГОСТ 25100-95 Грунты. Классификация.—М.: Издательство стандартов, 1995.
- 4. Далматов, Б.И. Механика грунтов, основания и фундаменты / Б.И.Далматов. Л.: Стройиздат, 1988.
- 5. Ухов, С.Б. Механика грунтов, основания и фундаменты / С.Б. Ухов, В.В. Семенов, В.В.Знаменский, З.Г.Тер-Мартиросян, С.Н. Чернышов. М., Изд-во АСВ, 1994. 527 с.
- 6. Пособие по проектированию оснований зданий и сооружений.-М.: Стройиздат, 1986. - 415 с.
- 7. Основания, фундаменты и подземные сооружения. Справочник проектировщика /Под ред. Е.А. Сорочана, Ю.С. Трофименкова.-М.: Стройиздат, 1985. 480 с.

Елена Олеговна Сучкова Анна Андреевна Кочеткова Сергей Яковлевич Скворцов Нагаева Светлана Петровна

Расчет оснований по несущей способности

Методические указания для студентов направления 270800.62 «Строительство», специальности 271101.65 «Строительство уникальных зданий и сооружений»

Подписано в печать	Формат	Бумага газетная. Печать трафаретная.							
Учизд. л1,2	Усл.печ.л1	,5Тираж 200 экз. Заказ №							
Государственное образоват	гельное учрежден	ие высшего профессионального образования							
«Нижегородский г	осударственный а	прхитектурно-строительный университет»							
603950, Н.Новгород, Ильинская, 65									
Полиграфие	ентр ННГАСУ 60	3950 Н Новгород Ильинская 65							