Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Нижегородский государственный архитектурно-строительный университет»

Кафедра общенаучных дисциплин

Контрольные материалы по химии ЧАСТЬ 1

Методические указания для иностранных граждан

Нижний Новгород ННГАСУ 2013 Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Нижегородский государственный архитектурно-строительный университет»

Кафедра общенаучных дисциплин

Контрольные материалы по химии **ЧАСТЬ** 1

Методические указания для иностранных граждан

НИЖНИЙ НОВГОРОД ННГАСУ 2013 УДК 54 (075)

Контрольные материалы по химии. Часть 1 [Текст]: метод. указания для

иностранных граждан / Нижегор. гос. архитектур. – строит. ун-т: сост.

Ю.И. Скопина – Н.Новгород: ННГАСУ, 2013. – 25 с.

Содержит контрольные задания по химии ДЛЯ иностранных

слушателей, обучающихся в Центре предвузовской подготовки и обучения

иностранных граждан ННГАСУ по направлению «Строительство».

Издание включает тестовые упражнения с ответами и охватывает темы:

«Строение атома», «Периодический закон», «Химическая

«Строение вещества».

Составитель: Ю.И. Скопина

(C) Нижегородский государственный архитектурно-строительный

университет. 2013

Тема 1 Строение атома Вариант 1

1. Восьмиэлектронную внешнюю оболочку имеет ион

- 1) P^{3+}
- (2) S^{2-}
- 3) C^{4+}
- 4) Fe²⁺

2.	Число элект	ронов в	ионе	железа	Fe^{2+}	равно
		PULLUD		221012000	_ •	P ***

- 1) 54
- 2) 28
- 3) 58
- 4) 24

3. Электронная конфигурация
$$1s^22s^22p^63s^23p^6$$
 соответствует иону

- 1) Sn²⁺
- 2) S^{2-}
- 3) Cr³⁺
- 4) Fe^{2+}

- 1) K⁺
- $2) Ar^0$
- 3) Ba⁰
- 4) F

5. Атом металла, высший оксид которого
$$Me_2O_3$$
, имеет электронную формулу внешнего энергетического уровня

- $1) ns^2 np^1$ $2) ns^2 np^2$

as^2n	p^3
	ns^2n_I

4)
$$ns^2np^0$$

6. Наибольший радиус имеет атом

- 2) кремния
- 3) свинца
- 4) углерода

7. Высший оксид состава R_2O_7 образует химический элемент, в атоме которого заполнение электронами энергетических уровней соответствует ряду чисел:

- 1) 2, 8, 1
- 2) 2, 8, 7
- 3) 2, 8, 8, 1
- 4) 2, 5

8. Число протонов и нейтронов, содержащихся в ядре атома изотопа $^{40}{
m K}$, равно соответственно

- 1) 19 и 40
- 2) 21 и 19
- 3) 20 и 40
- 4) 19 и 21

9. У атома серы число электронов на внешнем энергетическом уровне и заряд ядра равны соответственно

- 1) 4 и + 16
- $2) 6 \mu + 32$
- $3) 6 \mu + 16$
- $4) 4 \mu + 32$

10. Электронную конфигурацию $Is^22s^22p^63s^23p^64s^1$ в основном состоянии имеет атом

1) лития

2) натрия 3) колия
3) калия 4) кальция
11. Чему равно орбитальное квантовое число $3p$ -электрона?
1) 1
2) 3
3) 0
4) + 1/2
12. Распределение электронов в нормальном состоянии в атоме хрома по
энергетическим уровням соответствует ряду цифр:
1) 2, 8, 12, 2
2) 2, 8, 8, 6
3) 2, 8, 13, 1
4) 2, 8, 14, 0
13. Число d - электронов у атома серы в максимально возбужденном состоянии равно:
1)1
2) 2
3) 4
4) 6
14. Сколько электронов может находиться на третьем энергетическом уровне:
1) 3
2) 8
3) 18
4) 10
15. Сколько орбиталей содержит $5d$ -подуровень
1) 3

2) 5 3) 4 4) 7
16. Сколько электронов может максимально находиться $4f$ -подуровне
1) 7
2) 4
3) 14
4) 10
Вариант 2
1. Двухэлектронную внешнюю оболочку имеет ион
1) S^{6+}
1) S ⁶⁺ 2) S ²⁻
3) Br^{5+}
4) Sn ⁴⁺
2. Ион, в составе которого 16 протонов и 18 электронов, имеет заряд
1) +4
2) -2
3) +2
4) -4
3 Электронная конфигурация $1s^22s^22p^63s^23p^6$ соответствует иону
1) Cl ⁻
2) N^{3-}

4. Одинаковое электронное строение имеют частицы

1) Na⁰ и Na⁺

3) Br⁻ 4) O²⁻

- 2) Na⁰ и K⁰
- 3) Na⁺ и F⁻
- 4) Cr²⁺ и Cr³⁺
- 5. Элемент, которому соответствует высший оксид состава R_2O_7 имеет электронную конфигурацию внешнего уровня:
 - 1) ns^2np^3
 - $2)ns^2np^5$
 - 3) ns^2np^1
 - 4) ns^2np^2
- 6. Наибольший радиус имеет атом
 - 1) брома
 - 2) мышьяка
 - 3) бария
 - 4) олова
- 7. Высший оксид состава 90_3 образует элемент с электронной конфигурацией внешнего электронного слоя
 - $1) ns^2 np^1$
 - $2) ns^2 np^3$
 - 3) ns^2np^4
 - 4) ns^2np^6
- 8. Ядро атома ⁸¹Вг содержит
 - 1) 81р и 35п
 - 2) 35*p* и 46*n*
 - 3) 46*p* и 81*n*
 - 4) 46р и 35п
- 9. Число валентных электронов у марганца равно
 - 1) 1

- 2) 3
- 3)5
- 4) 7

10. Какую электронную конфигурацию имеет атом наиболее активного металла?

- 1) $1s^2 2s^2 2p^1$
- 2) $1s^2 2s^2 2p^6 3s^1$ 3) $1s^2 2s^2$
- 4) $1s^22s^22p^63s^23p^1$

11. Чему равно орбитальное квантовое число 5*s*-электрона?

- 1) 1
- 2) 5
- 3) 0
- 4) + 1/2

12. Распределение электронов по энергетическим уровням в ионе Fe³⁺ соответствует ряду чисел:

- 1)2, 8, 12, 1
- 2) 2, 8, 13, 0
- 3) 2, 8, 11,2
- 4) 2, 8, 10, 3

13. Число d- электронов у иона Cu^{2+} равно:

- 1)6
- 2)8
- 3)9
- 4) 10

14. Сколько электронов может находиться на четвертом энергетическом уровне:

1)4

- 3) 18 4) 32 15. Сколько орбиталей содержит 4f подуровень 1)3 2) 5 3)4 4) 7 16. Сколько электронов может максимально находиться 3d-подуровне 1) 10 2) 4 3) 14 4) 7 Тема 2 Периодический закон Вариант 1 1. В порядке увеличения электроотрицательности химические элементы расположены в раду: 1) C, N, O 2) Si.Al.Mg 3) Mg,Ca, Ba 4) P, S, Si 2. В главных подгруппах периодической системы восстановительная способность атомов химических элементов растет с
 - 1) уменьшением радиуса атомов

2)8

- 2) увеличением числа энергетических уровней в атомах
- 3) уменьшением числа протонов в ядрах атомов
- 4) увеличением числа валентных электронов

- 3. В ряду элементов Cl -->S --> P --> Si
 - 1) уменьшается число электронных слоев в атомах
 - 2) увеличивается число внешних электронов в а томах
 - 3) возрастают радиус атомов
 - 4) усиливаются неметаллические свойства
- 4. В ряду химических элементов Na --> Mg --> Al --> Si
 - 1) увеличивается число валентных электронов в атомах
 - 2) уменьшается число электронных слоев а атомах
 - 3) уменьшается число протонов в ядрах атомов
 - 4) увеличиваются радиусы атомов
- 5. В каком ряду элементы расположены в порядке возрастания их атомного радиуса?
 - 1) Si, P, S, C1
 - 2) O, S, Se, Te
 - 3) At, I, Br, Cl
 - 4) Mg, Al, Si, P
- 6. Неметаллические свойства наиболее выражены у
 - 1) серы
 - 2) кислорода
 - 3) кремния
 - 4) фосфора
- 7. В каком ряду простые вещества расположены в порядке усиления металлических свойств?
 - 1) Ca, Mg, Ba
 - 2) Na, Mg, A1
 - 3) Fe, Ca, K
 - 4) Sc, Ca, Mg

8. Кислотные свойства оксидов в ряду SiO_2 > P_2O_5 > SO_3				
1) уменьшаются				
2) увеличиваются				
3) не изменяются				
4) изменяются периодически				
9. Оксид с наиболее выраженными кислотными свойствами образует				
1) кремний				
2) фосфор				
3) cepa				
4) хлор				
10. Одинаковое значение валентности в водородном соединении и высшем оксиде имеет элемент				
1) хлор				
2) германий				
3) мышьяк				
4) селен				
11. Сила бескислородных кислот неметаллов VIIA группы соответственно возрастанию заряда ядра атомов элементов				
1) увеличивается				
2) уменьшается				
3) не изменяется				
4) изменяется периодически				
Вариант 2				
1. Электроотрицательность химических элементов с возрастанием заряда ядра атома				
1) увеличивается и в периодах, и в группах				
2) уменьшается и в периодах, и в группах				

- 3) увеличивается в периодах, а в группах уменьшается
- 4) уменьшается в периодах, а в группах увеличивается
- 2. У элементов подгруппы углерода с увеличением атомного номера уменьшается
 - 1) атомный радиус
 - 2) заряд ядра атома
 - 3) число валентных электронов в атомах
 - 4) электроотрицательность
- 3. В ряду химических элементов бор --> углерод --> азот возрастает
 - 1) способность атома отдавать электроны
 - 2) высшая степень окисления
 - 3) низшая степень окисления
 - 4) радиус атома
- 4. По периоду слева направо уменьшается
 - 1) число валентных электронов в атомах
 - 2) атомный радиус элементов
 - 3) электроотрицательность элементов
 - 4) кислотность гидроксидов элементов
- 5. Среди элементов третьего периода наименьший атомный радиус имеет
 - 1) натрий
 - 2) алюминий
 - 3) фосфор
 - 4) cepa
- 6. В порядке возрастания неметаллических свойств элементы расположены в ряду:
 - 1) O,N,C,B
 - 2) Cl,S,P,Si

4) B,C,O,F
7. В каком ряду простые вещества расположены в порядке усиления металлических свойств?
1) Mg, Ca, Ba
2) Na, Mg, A1
3) K,Ca,Fe
4) Sc, Ca, Mg
8. В ряду оксидов SiO_2 > P_2O_5 > SO_2 > Cl_2O_7 кислотные свойства
1) возрастают
2) убывают
3) не изменяются
4) сначала уменьшаются, потом увеличиваются
9. Кислотный характер наиболее выражен у высшего оксида, образованного элементом:
1) Sn
2) A1
3) C
4) S
10. Газообразные водородные соединения состава ЭН3 образуют
1) Be, Ca, Sr
2) P, As, Sb
3) Ga, Al, B
4) Te, S, Sc

3) C,Si,Ge,Sn

11. Наиболее сильное основание образует

магний
 стронций

- 3) барий
- 4) кадмий

Тема 3

Химическая связь

Электроотрицательность. Степень окисления и валентность химических элементов

Вариант 1

1.	В	аммиаке	e (NH ₃)	химическая	связь	соответственно

- 1) ионная
- 2) ковалентная полярная
- 3) ковалентная неполярная
- 4) и металлическая

2. В каком ряду записаны формулы веществ только с ковалентной полярной связью?

- 1) C1₂, NO₂, HC1
- 2) HBr, NO, Br₂
- 3) H₂S,H₂O,Se
- 4) HI, H₂O, PH₃

3. Ковалентная неполярная связь характерна для

- 1) C₁₂
- 2) SO₃
- 3) CO
- 4) SiO₂

4. Веществом с ковалентной полярной связью является

- 1) C₁₂
- 2) NaBr
- 3) H₂S
- 4) MgCl₂

- 5. Вещества только с ионной связью приведены в ряду: 1) F₂, CCl₄, KC1 2) NaBr, Na₂O, KI 3) SO₂, P₄, CaF₂ 4) H₂S, Br₂, K₂S 6. Между атомами с одинаковой относительной электроотрицательностью образуется химическая связь 1) ионная 2) ковалентная полярная 3) ковалентная неполярная 4) водородная 7. Полярность связи наиболее выражена в молекуле 1) HI 2) HC1 3) HF 4) HB_Γ 8. Наименее прочная химическая связь в молекуле 1) фтора 2) хлора 3) брома 4) иода 9. Ковалентную связь имеет каждое из веществ, указанных в ряду: 1) C_3H_4 , NO, Na₂O 2) CO, CH₃C1, PBr₃ 3) P₂O₃, NaHSO₄, Cu 4) C₆H₅NO₂, NaF, CC1₄
- 10. Электроотрицательность атома это
 - 1) отрицательный заряд атома в молекуле

- способность атома переходить в возбужденное состояние
 способность атома, участвующего в химической связи, смещать к себе электронную пару, участвующую в образовании химической связи
 потенциал ионизации атома
- 11. Элементы расположены в порядке возрастания электроотрицательности в ряду
 - 1) O, H, Br, Te
 - 2) C, I, B, P
 - 3) Sn, Se, Br, F
 - 4) H, Br, C, B
- 12. Наибольшую степень окисления марганец имеет в соединении
 - 1) MnSO₄
 - 2) MnO₂
 - 3) K_2MnO_4
 - 4) Mn_2O_3
- 13. Степень окисления хлора в Ba(ClO₃)₂ равна
 - 1) + 1
 - 2) + 3
 - 3) + 5
 - 4) + 7
- 14. Наименьшую степень окисления сера проявляет в соединении
 - 1) Na₂S
 - 2) Na₂SO₃
 - 3) Na₂SO₄
 - 4) SO₃

15. Одинаковую степень окисления азот проявляет в веществах, указанных в ряду:
1) N ₂ O ₅ , HNO ₃ , NaNO ₃
2) NO_2 , HNO_3 , KNO_3
3) NO, NO ₂ , N ₂ O ₃
4) HNO_3 , HNO_2 , NO_2
16. Наиболее электроотрицательным элементом является
1) кремний
2) свинец
3) олово
4) углерод
17. Степень окисления + 3 хром имеет в соединении
1) CrO
2) Cr_2O_3
3) CrO_3
4) H_2CrO_4
18. Степень окисления упора в Са(С1О), равна

18. Степень окисления хлора в $Ca(C1O)_2$ равна

- 1)+1
- 2) +3
- 3)+5
- 4) +7

Вариант 2

1. В хлориде бария (BaCl₂) химическая связь соответственно

- 1) ионная
- 2) ковалентная полярная
- 3) ковалентная неполярная
- 4) и металлическая

2. В каком ряду все вещества имеют ковалентную полярную связь?
1) HCl, NaCl, Cl ₂
2) O_2 , H_2O , CO_2
3) H ₂ O,NH ₃ , CH ₄
4) NaBr, HBr, CO
3. Вещество с ковалентной неполярной связью имеет формулу
1) NH ₃
2) Cu
3) H ₂ S
4) I ₂
4. Ковалентная полярная связь характерна для
1) KC1
2) HBг
3) P ₄
4) CaCl ₂
5. Среди веществ NH ₄ Cl, CsCl, NaNO ₃ , PH ₃ , HNO ₃ - число соединений с
ионной связью равно
1) 1
2) 2
3) 3
4) 4
6. Тремя общими электронными парами образована ковалентная связь в
молекуле
1) азота
2) сероводорода
3) метана
4) хлора

7. Полярность связи наиболее выражена в молекулах
$1) H_2S$
2) Cl ₂
3) PH ₃
4) HCl
8. В молекуле какого вещества длина химической связи наибольшая?
1) фтора
2) хлора
3) брома
4) иода
9. Ковалентную связь имеет каждое из веществ, указанных в ряду:
1) CaO, C_3H_6 , S_8
2) Fe,NaNO ₃ , CO
3) N_2 , $CuCO_3$, K_2S
4) $C_6H_5NO_2$, SO_2 , $CHC1_3$
10. Степень окисления атома – это
1) условный заряд, вычисленный из предположения, что все
полярные ковалентные связи являются ионными
2) число отданных в ходе химической реакции электронов
3) отрицательный заряд, сосредоточенный на какой-либо части
молекулы
4) заряд иона в нерастворимом веществе
11. В порядке увеличения электроотрицательности элементы
расположены в ряду:
1) O-N-C-B
2) Si-Ge-Sn-Pb
3) Li-Na-K-Rb
4) Sb-P-S-Cl

12. Наибольшую степень окисления марганец проявляет в соединении
1) KMnO ₄
2) MnO
3) K_2MnO_4
4) MnCO ₃
13. Степень окисления + 3 азот проявляет в соединении
1) NH ₄ C1
2) NaNO ₃
3) N_2O_4
4) KNO ₂
14. Минимальную степень окисления хлор проявляет в соединении
1) NH ₄ C1
2) Cl ₂
3) $Ca(OCl)_2$
4) NaCIO
15. Степень окисления азота увеличивается в ряду веществ:
1) NH ₃ , NO, HNO ₃
2) NO, NO ₂ , NH ₃
3) NH ₃ , HNO ₃ , NO ₂
4) KNO ₃ , KNO ₂ , NO ₂
16. Наиболее электроотрицательным элементом является
1) кремний
2) азот
3) фосфор
4) селен
17. В каком соединении степень окисления серы равна +4?
1) H_2SO_4

- 2) FeS 3) H₂SO₃4) SO₃ 1) серой
- 18. Хлор проявляет положительную степень окисления в соединении с

 - 2) водородом
 - 3) кислородом
 - 4) железом

Тема 4 Строение вещества

Вариант 1

- 1. Молекулярное строение имеет
 - 1) C₁₂
 - 2) CaO
 - 3) ZnCl₂
 - 4) NaBr
- 2. Немолекулярное строение имеет
 - 1) азот
 - 2) графит
 - 3) аммиак
 - 4) кислород
- 3. Молекулярную кристаллическую решетку имеет
 - 1) кремний
 - 2) оксид углерода (IV)
 - 3) оксид кремния
 - 4) нитрат аммония

4.	Ионное строение имеет
	1) оксид бора 2) оксид углерода (IV)

- 3) оксид серы (VI)
- 4) оксид магния

5. Металлическую кристаллическую решетку имеет

- 1) малахит
- 2) бронза
- 3) кремнезем
- 4) графит

6. Молекулярную кристаллическую решетку имеет

- 1) фторид кальция
- 2) бромид алюминия
- 3) сероводород
- 4) хлорид меди (П)

7. Кристаллическая решетка хлорида кальция

- 1) металлическая
- 2) молекулярная
- 3) ионная
- 4) атомная

8. Кристаллическая решетка твердого оксида углерода (IV)

- 1) ионная
- 2) молекулярная
- 3) металлическая
- 4) атомная

Вариант 2

1. Молекулярное строение имеет

1) металлическую 2) молекулярную

1) алмаз

2) азот
3) кремний
4) поваренная соль
2. Немолекулярное строение имеет
1) H ₂ O
2) H2SO4
$3) SiO_2$
4) CO ₂
3. Молекулярную кристаллическую решетку имеет
1) CaF ₂
$2) CO_2$
3) SiO_2
4) $A1F_3$
4. Ионную кристаллическую решетку имеет каждое из веществ, расположенных в ряду:
1) Na, NaCl, NaH
2) Ca, CaO, CaCO ₃
3) NaBr, K ₂ SO ₄ , FeCl ₂
4) $Mg_3(PO_4)_2$, KCl , P_2O_5
5. Вещества твердые, прочные, с высокой температурой плавления, расплавы которых проводят электрический ток, имеют кристаллическую решетку

- 3) атомную
- 4) ионную
- 6. Молекулярную кристаллическую решетку имеет
 - 1) CaF₂
 - 2) SO₂
 - $3)SiO_2$
 - $4)AlF_3$
- 7. Кристаллическая решетка брома
 - 1) молекулярная
 - 2) металлическая
 - 3) ионная
 - 4) атомная
- 8. Ионы являются структурной единицей для каждого из двух веществ:
 - 1) CH₄ и I₂
 - 2) SO, и H₂O
 - 3) Cl₂ и NH₃
 - 4) LiF и KCl

Ответы на тестовые задания

Номер	Тем	иа 1	Тем	иа 2	Тем	ла 3	Тем	иа 4
вопроса	B 1	В 2	B 1	B 2	B 1	B 2	B 1	В 2
1.	2	3	1	3	2	1	1	2
2.	4	2	2	4	4	3	2	3
3.	2	1	3	2	1	4	2	2
4.	1	3	1	1	3	2	4	3
5.	1	2	2	4	2	3	2	1
6.	3	3	2	4	3	1	3	2
7.	2	1	3	1	3	4	3	1
8.	4	2	2	1	4	4	2	4
9.	3	4	4	4	2	4		
10.	3	2	2	3	3	1		
11.	1	3	1	3	3	4		
12.	3	2			3	1		
13.	2	3			3	4		
14.	3	4			1	1		
15.	2	4			1	1		
16.	3	1			4	2		
17.					2	3		
18.					2	3		

Скопина Юлия Игоревна

Контрольные материалы по химии ЧАСТЬ 1

Методические указания для иностранных граждан

Подг	писано к печати	Формат <u>60</u> °	*90 1/16
	Бумага газетная. І	Течать офсетная	
Уч. изд. л	Уч. печ. л	Тираж 150	Заказ№